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PREFACE

This report combines the semiannual technical reports for the

periods April 1, 1982 to September 30, 1982 and October 1, 1982 to March

31, 1983.
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I INTRODUCTION

Research at SRI International under the DARPA Image Understanding

Program was initiated to investigate ways in which diverse sources of

knowledge might be brought to bear on the problem of analyzing and

interpreting aerial images. An initial, exploratory phase of research

identified various means for exploiting stored knowledge in the

processing of aerial photographs for such military applications as

cartography, intelligence, weapon guidance, and targeting. A key

concept was the use of a generalized digital map to guide the process of

image analy:;is. The results of this earlier work were integrated into

an interactive compiex system called "Hawkeye" [1].

Research subsequently focused on development of a program capable

of expert performance in a specific task domain--road monitoring. The

primary objective of this work was to build a computer system (called

the Road Expert) that "understands" the nature of roads and road events;

it is capable of performing such tasks as:

* Finding roads in aeri.l imagery.

* Distinguishing vehicles on roads from shadows, signposts,
road markings, etc.

* Compaping multiple images and symbolic information
pertaining to the same road segmen,, and deciding whether
significant changes have occurred.
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The general approach, and technical details of the Road Expert's

components, are contained in the references [2-8]. We have integrated

some of these separate components into a system that facilitates testing

and evaluation and have transferred this system to the DARPA/DMA

Testbed.

We are now close to the completion of this contract and are in the

final stages of two remaining major activities:

We have completed our planned program of machine vision research--

specifically, selected problems in the areas of three-dimensional

terrain understanding, linear-feature analysis, image partitioning, and

image description and matching. This research program has been centered

on the concept that image interpretation, except in the simplest

situations, involves a form of reasoning ("perceptual reasoning") that

is characterized by the need to integrate information from multiple

sources, which are typically incommensurate and often erroneous or in

conflict. We have developed a number of new techniques, and even

complete paradigms, for effecting the knowledge-integration task. These

new techniques have been incorporated in the more focused efforts

discussed in Section II, which address significant problems in scene

analysis.

We have almost completed work on the DARPA/DMA Testbed project; the

main items remaining are primarily concerned with documentation. In

Section III of this report we describe the current status of the
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Testbed. (Hanson and Fischler (9] describe the purpose and goals of the

Testbed project in greater detail.)

5



II RESEARCH PROGRESS AND ACCOMPLISHMENTS

A. Three-Dimensional Compilation and Interpretation

The problem of stereo reconstruction is almost synonymous with the

problem of machine vision--use of imaged data to (geometrically) model a

sensed scene. A key concept in our approach [10-13] is the use of

global physical and semantic constraints (e.g., sun location, vanishing

points, edge detection and classification, skyline delineation, etc.)

to resolve local ambiguities that defeat conventional stereo-matching

techniques in mapping cultural or urban scenes, i.e., scenes that

contain featureless areas and large numbers of occlusion edges, or

scenes that are represented by widely separated or oblique views.

When a stereo pair of images are matched, even with the best

possible use of available data (because of some of the problems

mentioned above, e.g., occlusion and featureless areas), we generally

can do no better than to compute a sparse depth map of the imaged scene.

However, for many tasks, a sparse depth map is inadequate. We want a

complete model, which accurately portrays the scene's surfaces. To

achieve this goal, we must obtain the missing surface shape information

from the shading of the images of the stereo pair. We have made

significant progress in understanding what is possible with respect to
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surface interpolation using scene shading. Pentland [14] and Smith [15]

discuss some of our recent work in this research area.

B. Detection. Dlineationl -- nd Interpretation of Linear Features in
Aerial imagery

We have developed a system, called the "Road Expert," which can

precisely delineate roads in both high- and low-resolution aerial

imagery, and classify the visible objects that fall within the road

boundaries [2-8]. A demonstration version of the Road Expert has been

installed on the DARPA/DMA testbed. We have investigated extensions of

the above work to the problem of delineating other types of linear

structures, such as rivers [16], and have recently made a significant

advance towards developing a completely autonomous system for

delineation of arbitrary linear structures [17].

C. Image Matching and Imae-to-Database Correspondence

We have developed a new paradigm, called Random Sample Consensus

(RANSAC), for fitting a model to data containing a significant

percentage of gross errors, and have applied this paradigm to the

solution of the matching/correspondence problem [18]. A RANSAC-based

camera model solver has been developed and installed on the testbed. We

expect that RANSAC will be equally applicable to a wide range of other

model-based interpretation tasks, and, under a separate contract, are

investigating its use for recognizing and labeling known two- and three-
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dimensional scene features, even though seen under unusual viewing or

illuminat.on conditions and even when the objects are partially

occluded.

D. ImaSe Partitioning, Intensitl Modelin g and Material Identification

Our goal in this effort is the development of techniques for

partitioning and modeling the material composition of a scene from

available imagery. In order to recover information about actual surface

reflectances and physical composition, the problem of intensity modeling

must be addressed. We have developed methods for deriving absolute

scene-intensity information without calibration data (such as a step

wedge exposed on the image) based on knowing the identity of the

material composition of the surfaces at a few points in the image--this

capability is required to partition the image into labeled regions of

given material types [10].
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III STATUS OF THE DARPA/DMA IMAGE UNDERSTANDING TESTBED

The DARPA/DMA Image Understanding Testbed established at SRI as

part of the DARPA Image Understanding research program constitutes a

coherent body of software running in a standard hardware environment.

Demonstrations of the features and capabilities of all IU-community-

contributed software are available; detailed evaluations have been

carried out for selected modules. The Testbed is now established as a

technology transfer tool, which can be utilized by appropriate agencies

to evaluate the applicability of the contributed scene analysis

te chniques.

Documentation of the Testbed is entering its final phase. Final

drafts of the User's manual, the Programmer's manual, and the System

Manager's manual are available and will soon pass through the required

editing and approval procedures. The evaluation reports for the Ghough

and Phoenix programs have been completed and are included as appendices

to this report. Work is almost finished on the evaluation report for

the Relaxation package and on user-level documentation of those

contributions for which no detailed evaluation is planned. More

extensive studies of the various approaches to stereo compilation now

available on the Testbed will be integrated into a separate, ongoing,

DARPA-supported research effort.
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The Testbed is now sufficiently well-defined that exact copies of

the entire system can be configured, if desired. SRI, under a separate

contract, is just completing the installation of a Testbed copy

(hardware and software) at the U.S. Army Engineer Topographic

Laboratories (ETL) at Fort Belvoir. A Lisp Machine will be added to the

ETL configuration later in the year. SRI will also be supplying Lisp

Machines and Lisp Machine software to the DMAHTC and DMAAC branches of

the Defense Mapping Agency. SRI has been closely involved in efforts to

ensure that the upgrade of the DMA AFES/RWPF facilities to the VAX-

11/780 CPU can incorporate the Image Understanding Testbed capabilities,

as well as supporting the Lisp Machines.

The Testbed software system and its utilities are being prepared

for export to university researchers in the IU program as well as to

other U.S. Government agencies interested in establishing Tested

copies. SRI has developed a simple license agreement to help protect

Testbed contributors and restrict use of the software to appropriate

academic and government research environments.
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Foreword

The primary purpose of the Image Understanding (IU) Testbed is to pro-
vide a means for transferring technology from the DARPA-sponsored IU
research program to DMA and to other organizations in the defense com-
munity.

The approach taken to achieve this purpose has two components:

(1) The establishment of a uniform environment as compatible as
practical with the environments of research centers at universities
participating in the IU research program. Thus, organizations obtain-
ing copies of the Testbed can receive a continuing flow of new results
derived from on-going research.

(2) The acquisition, integration, testing, and evaluation of selected
scene analysis techniques that represent mature examples of generic
areas of research activity. These contributions from participants in
the III research program will allow organizations with Testbed copies
to begin the immediate exploration of applications of IU technology to
problems in automated cartography and other areas of scene
analysis.

The IU Testbed project was carried out under .DARPA contract No.
MDA903-79-C-0599. The views and conclusions contained in this document
are those of the author and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States Govern-
ment.

This report describes the GHOUGH generalized Hough transform package
contributed by the University of Rochester and provides an evaluation of
its features.

Andrew J. Hanson
Testbed Coordinator
Artificial Intelligence Center
SRI International



Abstract

GHOUGH Is a computer program for detecting instances of a given shape
within an image. It may be used for cueing, counting, or mensuration.
GHOUGH can find instances that are displaced, rescaled, rotated, or
incomplete relative to the shape template. They are detected by comput-
ing a "generalized Hough transform" of the image edge elements. Each
edge element votes for all those instances of the shape that could contain
it: the votes are tallied and the best supported instances are reported as
likely matches.

GHOUGH was contributed to the DARPA Image Understanding Testbed at
SRI by the University of Rochester. This report summarizes applications
for which GHOUGH is suited, the history and nature of the algorithm,
details of the Testbed implementation, the manner in which GHOUGH is
invoked and controlled, the types of results that can be expected, and
suggestions for further development. The scientific contributions of this
technical note are the analysis of GHOUGH's parameter settings and per-
formance characteristics.
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Section 1

Introduction

GHOUGH is a computer program for detecting instances of a given shape within ax.
image. The instances may be displaced, rescaled, rotated, or incomplete relative to
the shape template. Shape instances are detected by computing a "generalized Hough
transform" of the image edge elements. Each edge element votes for all those
instances of the shapethat could contain the observed edge. The votes are tallied and
the best supported instances are reported as likely matches.

The package was originally written in the SAIL language by Drs. Dana H. Ballard and
Kenneth R. Sloan, Jr., at the University of Rochester. It was rewritten in C and
prepared for delivery to the IU Testbed by Bill Lampeter at Rochester. At SRI the code
was integrated with utility and image display software derived from other contribu-
tions, particularly those from Carnegie-Mellon University. This integration was done by
Dr. Kenneth I. Laws.

Numerous changes were made in the user interface to facilitate evaluation activities. A
few extensions were made relating to multiple target detections, but the central algo-
rithm has been left virtually unchanged. The information in this document should thus
be considered supplementary to the material cited in the references.

This document includes both a user's guide to the GHOUGH generalized Hough
'transform package and an evaluation of the algorithm. Section 2 explains the nature

ad uses of the algorithm and suggests alternate approaches to similar data analysis
problems. Section 3 surveys the historical development of generalized Hough tech-
niques and presents the current algorithm in detail. Section 4 instructs the user in the
mechanics of using the GHOUGH software. Section 5 goes into greater detail on the
meaning of the user-specified parameters, documents the performance that may be
expected in various circumstances, and presents the results of evaluation tests. Sec-
tion 6 outlines a number of suggestions for improving the algorithm and its implemen-
tation.



Section 2

Background

ris section presents a management view of the GHOUGH program. The template
mnatching algorithm is oriefly sketched. Typical applications and potential applications
requiring further development of the algorithm are discussed, and related applications
for which other algorithms are better suited are noted.

2.1. Method

GHOUGH is a program for detecting instances of a given shape withiu a digital image.
The shape is described by a template -- a series of dots outlining the shape and form-
ing a closed boundary. Only silhouette information is used: this provides noise
immunity in many applications, but does limit the use of GHOUGH in infrared targetidentification and other low-resolution applications.

Templates are abstract shapes, without size or orientation. They are also stored
without contrast information so tWat instances may be located against darker or
lighter backgrounds. (For efficiency the GHOUGH program allows the user to restrict
the search to particular sizes, orientations, contrast directions, or subareas in the
image. Shape instances outside these ranges will not be found.)

The GHOUGH program passes an edge detector over the image. The edge detector
computes both a gradient magnitude and a gradient direction at each point (pixel) in
the image. The user must set a threshold value for choosing which gradients are
strong enough to be considered valid edges.

Each edge is allowed to vote for all shape instances of which it could be a part. One
vote is recorded for each point in the template at each permissible orientation and
size. This vote corresponds to the computed (x, y) coordinate position of the shape
center. (The shape position is indicated by an arbitrary reference point in the tem-
plate. Typically this point is at the center of the shape, but for a corner template the
logical position would be the vertex of the corner angle.) Two separate votes are
recorded if the shape may be on either the dark or the light side of the detected
edge. The votes are added into an accumulator array consisting of one cell for each
permissible shape instance.

Each cell of the accumulator corresponds to an (x, y) coordinate position in the
image at which a shape center might be found. Each cell also has an associated rota-
tion and radius, so that there may be many cells corresponding to each (x, y) posi-
tion. The set of cells belonging to a single (rotation, radius) pair is called an accumu-
lator plane. For efficiency the search may be limited to template center points
spaced every few pixels in each image direction and to rotation and radius values
that are also coarsely quantized.

Each edge votes for many potential instances of the target shape. Some cells in the
accumulator will receive only a few votes while others will receive many. A cell
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Background

corresponding to a true instance of the shape . uld receive far more votes than
other cells around it. Shape instances may thu. be found as local maxima in the
accumulator. The few maxima receiving the hig. -ast counts are reported as likely
matches.

.2. Typical AppIications

The GHOUGH program may be used in any application where a known shape is to be
found or measured in an image. It will detect instances of the target shape within a
specified range of sizes or orientations and can do so in the presence of noise, occlu-
sion, weak shadows, and some types of texture or camouflage. Matching is done in
two dimensions, without regard for perspective changes or image warps. Large
shapes are located more reliably than small ones, and high-contrast instances more
reliably than those that match their backgrounds.

The program can detect or verify the presence of expected image features as in
registration, terminal guidance, and cueing of specific targets. It is well suited for
coarse registration (finding the first landmark) and for fine registration of individual
landmarks, but not for simultaneously finding .many different landmarks.

Once a target has been located, the prograt., , " be used for camera calibration or
change detection. These applications req:. - .. fine quantization in the accumula-
tor to accurately determine the rotation . and scale of the landmark image.
Camera position can then be derived if the ",,.dmark dimensions are known. Such
information is useful in aerial image registrat ir and in navigation.

Parameters measured from a calibrated imaging system may be used for image
analysis and change detection. The GHOUGH program is only capable of finding
matches to expected shapes. Analysis of shape changes, as in snow cover or lake
boundaries, requires higher-level techniques. Better tools for analyzing close per-
spective views of three-dimensional objects may be found in the ACRON. M system
[Binford8l] and in various warp-registration systems [Chien75, Belsher79, Clark79,
Lowe8O, Noges80].

Temporal change detection and scene analysis problems often require that irregu-
larly shaped regions of one image be identified as corresponding to regions in the
other image despite contrast and location differences. This can be done by segment-
ing both images and establishing region correspondences [Price75], or by segment-
ing one image and using the GHOUGH program to find the same regions in the other
image.

Tracking of large objects, as in weaponry fire control, is an application of image-to-
image registration for which the GHOUGH program is well-suited. The shape can be
extracted from the first image frame (or from a target database) and can be used to
track the object through succeeding frames. Some augmentation of the GHOUGH
algorithm is needed if perspective changes of three-dimensional objects are to be
accommodated during tracking. It should be noted that tracking is a well-developed
area of image processing and that many special-purpose algorithms already exist
[Fiachs76, WDESC76, Woofson76, Choate79, Dougherty79, Fitts79p, riachs79, Good-
man79, Maybeck79, Orton79, Pridgen79, Reid79].

The GHOUGH program is ideally suited for finding multiple instances of a shape, as in
industrial bin picking, microscopic particle counting, or railroad yard monitoring. It
might find use in counting the buildings or finding all the right-angled corners in a
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high-resolution urban scene. Other straightforward applications are character
recognition ('K a limited symbol set), industrial parts identification, and sensing
the position of a robot arm. It could also be used to search for additional parts of an
object or structure once a subpart has been found. Other edge-based template
matching techniques [Hemami7O, McKee76, Perkins76, BollesB2] may be competitive
for all these uses.

A particular example of shape detection is the identification of circular structures in
an image. Circles in aerial images often indicate storage tanks, while those in
ground-based imagery may indicate vehicle wheels, storage tanks, or other man-
made artifacts. The GHOUGH program can be used to identify all circles or circular
segments in an image (within a specified range of radii and contrast parameters).

GHOUGH can also be used to find ellipses or parabolas of any orientation, although
the aspect ratio of the shape must be fixed. Ellipse detection is used to find circular
objects viewed from an oblique angle or cylindrical parts scanned by a light beam[Boles~l]. Hough parabola detection has been used for locating ribs in chest x-rays
Wechsler77]. More general techniques for finding parametric curves of unknown

aspect ratio will be described later.

Texture analysis is the identification of a texture pattern or of the process that pro-
duced it. Some methods of texture analysis require that subpatterns (i.e., texture
elements, or "texels") be identified, as in the identification of an orchard by the reg-
ular spacing of the trees. The GHOUGH program is well suited to finding the texture
primitives providing that they are all similar and have sharp outlines. The program
cannot address the harder problem of knowing which texture elements to look for in
the first place.

Z3. Potential Ektensions

The GHOUGH algorithm is essentially a pattern recognition technique [Ballard8la].
Minor modifications to the data collection processes will change the class of patterns
to be detected. For instance, a line detector could be substituted for the edge detec-
tor in order to locate thin rivers, roads, or other linear features in an image. One
such approach that uses line segments instead of points or edges is described in
[Davis82].

The current restriction that templates be specified as closed curves is not inherent
in the algorithm. Future versions of GHOUGH may permit linear or arbitrarily con-
nected templates. This would increase the reliability of detecting linear features and
common shape fragments (e.g., object corners). It would also permit internal detail
to be used in a template as well as silhouette information.

A particular case of linear feature detection is the detection of all straight line seg-
ments in a scene. This is especially important in navigational obstacle avoidance,
terminal guidance, and robotic manipulation. The Hough algorithms grew out of such
applications [Hough62, Griffith7o, O'Gorman73, Perkins73, Doudani77], and the
GHOUGH program could easily be adapted to this purpose. Lines segments or wires
fou id in a sueue would have to be verified by other means since the Hough transform
is not well suited to finding the end points of a segment.

Circle detection has been discussed above. Although the current program can find
circles and other analytic shapes, it is not as proficient at these tasks as a special-
purpose algorithm. If circle finding is important, it may be advantageous to use a
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special accumulator for the purpose. This is very similar to the adaptation for line
finding mentioned above. Hough curve detectors have been studied by several
authors [Duda72, Merlin75, Kimme75, Ballard76, Tsuji77, Tsuji78, Sklansky78,
Shapiro78a, Shapiro78b, Shapiro78c]. Least-squares fitting [Bolles8l] and other pat-
tern recognition methods have also been studied, and may offer advantages over
Hough techniques. Once a curve or boundary has been located, Hough techniques
offer one of many approaches to segmenting the curve into meaningful fragments
[Shapiro79b].

Tracking point targets is easier than area-based change detection. Hough techniques
can be used to cluster motion or optic flow vectors to find groups of objects moving in
formation [O'Rourke8ib]. Other generalized Hough techniques have been used to
track changes in line drawings or edge maps and to check multitarget trajectories
for consistency [Yam6l].

Hough methods can also be used for finding vanishing points in perspective scenes
and foci of expansion in optic flow images. A method has been developed [Balard8lb]
that uses a Hough line finder on the original image and a similar circle finder on the
accumulator. This works because all lines through a vanishing point in the original
image will cluster along a circle through the origin in Hough space. It may be possi-
ble to develop a single-stage Hough-style transform to replace this two-stage process.

Several Hough techniques are candidates for detecting complex composite shapes.
Articulated shapes, such as the arm of a robot manipulator, are best found by locat-
ing the individual parts and then using higher-level knowledge to recognize the com-
posite. Complex rigid shapes, such as a vehicle, may be found by a similar technique
or by convolution in the accumulator [Ballard8la]. The convolution technique is
based on the fact that an edge element votes more accurately for nearby reference
centers than for template centers further away. One can therefore increase recogni-
tion accuracy by breaking the template into smaller chunks, voting for the chunks
independer' ,y, and then combining the votes according to the template decomposi-
tion. This permits recognition in cases where individual subparts may not be
identifiable without contextual information. Another approach, called the hierarchi-
cal generalized Hough transform, has been developed by Davis and Yam [Davis82].

Several researchers [Ballard~lb, BaUard~lc, Hintonli, Sabbah8l] are now working
on generalizations and implementations of the Hough transform for intrinsic image
estimation. This is the conversion of an image, or a sequence of images, into explicit
maps of edge locations, color regions, surface orientations, distances from the
viewer, optic flow, etc. It is believed that all of these intrinsic image properties must
be derived simultaneously (i.e., the problems are tightly coupled) and that only mas-
sively parallel architectures such as the human brain are adequate for the task.
These intrinsic images have been labeled "parameter networks" [Ballard~lb], and
the associated "constraint transforms" are modeled as Hough transforms. New
methods of image analysis may arise from this work.

Z4. Related Aplications

Thiq section Jes.ribes applications that are similar to Hough trnan^rm annIation,

but that differ in some fundamental fashion. While the difficulties with applying the
transform could be overcome with special hardware, other techniques would often be
more appropriate.

Cueing is the initial detection of interesting objects in a scene. Sometimes object
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recognition is included with cueing when only certain types of object are of interest.
The GHOUGH program can be used to cue instances of a given shape, but it is not well
adapted to recognizing classes of objects. At best it can maintain a separate accu-
mulator for each of several shapes or subshapes (e.g., corners, straight lines, or
parallel segments). Cueing is better performed with real-time level slicing or
pseudo-coloring, or with matched filters [Otazo79], statistical classifiers [Touch-
berry77], blob detectors [Klein77, Tisdale77, Milgram78a, Deal79, Tisdale79], corner
detectors [Perkins73, Rosenfeld78, Hwang79], or unusual-pattern detectors [Haral-
ick75, Winklr78].

Object identification is the recognition of a shape once it has been cued. The
GHOUGH program is only capable of template matching [Stockman77], and would
have to maintalu a separate accumulator for each identifiable silhouette. In gray-
scale imagery this may be less successful than correlation matching; in perspective
scenes the more flexible techniques of boundary following [Lucey76, Martel76,
Nahi78] or edge linking [Nevatia76, Milgram78b, Narendra79, MacVicar-Whelan~l,
McQueen8l] and shape analysis [Arcelli7l, Freeman74, McKee76, Tanimoto77, Bin-
ford81] may be superior.

Image-to-image registration ic the process of finding the warp coefficients needed to
align one image with another. A GHOUGH approach would require that (possibly
unidentified) shapes found in one image be located -a the other image so that warp
parameters could be computed. This fails on low-contrast or blurred imagery and is
less robust than correlation methods using all the gray-scale or gradient information
in the scene.

Stereo compilation is a particular type of image-to-image registration in which the
two images are known to differ by a small change in camera position. The compila-
tion uses the known perspective change to compute distances from the camera to
elements in the image. This and other stereo matching problems are basically one-
dimensional, and are better handled by correlation or special-purpose techniques
[Gennery77, BakerS0, Grimson80] than by a general shape-detection routine.

Registration and cueing are just particular applications of pattern recognition. A
great many pattern recognition techniques have beezi developed for recognizing
regularities or particular patterns in lists of data vectors. Any of these techniques
could be substituted for the accumulator technique used by the GHOUGH program.
Some of these techniques offer adaptive improvement as they process new images,
others are guaranteed optimal for particular detection problems.

Ellipse detection can be used as a particular example. The GHOUGH program treats
ellipse templates as general shapes, no different from any others. Each edge ele-
ment must vote for many cells in the accumulator - all the cells occupying a cone in
(x,y,radius) space. These votes could be reduced to a single vote if edge pairs were
considered instead of individual edges [Laws77]. Computational savings are even
greaber if ellipses of arbitrary aspect ratio are to be detected in a five-dimensional
parametric space [Tsuji77, Tsuji78]. The tradeoff in these cases is that the number of
edge pairs is much larger than the number of edge elements, so that complex
screening is needed tc reduce the number of edge pairs actually used.

Another advantage of some pattern recognition techniques is that the detected
object is identified by arbitrarily accurate coordinates. There is no quantization
problem or corresponding computational space/tiae tradeoff as with the Hough
techniques. Two-pass coarse/fine registration techniques are thus not required,
although back projection and validation against the image may still be desirable.
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Section 3

Description

This section presents the history of generalized Hough analysis methods and a detailed
statement of the GHOUGH algorithm. The historical information is intended to clarify
the major issues in recursive segmentation and to provide entry points into the litera-
ture.

3.i. izrtoiy

The GHOUGH program detects instances of a given shape by combining many pieces
of local evidence. The original Hough translorm [Hough62, Rosenfeld69, Griffith70
was a method of finding lines through a pattern of points. Duda and Hrrt [Duda72]
introduced the normal parameterization of Anes instead of the slope-interce:)t form.
Others [O'Gorman73, Perkins73, Shapiro74] iised gradient direction at each point to
improve the voting method.

Other related methods have been used to locate circles [Rastian71, Duda72,
Kimme75], parabolas [Wechsler75], and ellipseL [Tsuji77, Tsuji7B]. The extension to
other analytic shapes was obvi.ous, although implementation questions remained
[Shapiro75, Shapiro76, Shapiro78a, Shapiro78b, Shapiro79a, Zabele79]. A survey of
this work has been published [Iannino7T]. Hough transforms have also been applied
to trajectories generated by dynamic processes [Shapiro78c, Yam8i].

Merlin and Farber [Merlin75] extended the Hough technique to nonanalytic shapes by
using a template to control the gathering of evidence. Their method mapped each
(directionless) point in a binary image into an inverted'trace of the template in the
accumulator. The best instance of the sought shape was then indicated by the cell
accumulating the most votes.

Ballard [Ballard81a] restructured this technique to make it flexible and efficient. The
GHOUGH program grew out of this work [SloanBO]. It ises a compiled template to
simplify addressing in the accumulator, and it starts with directed edge segments
instead of image points. The directed edge segments constrain the possible orienta-
tions of a shape instance so that only a few cells need to be incremented.

32. Theory

There have been many formalizations of Hough transform theory, particularly for the
application of analytic curve detection. See van Veen [van Veen~l] for a particularly
nice analysis of straight line detection; a related error analysis has been published by
[Shapiro79a]. It has recently been recognized that Hough transforims are a special
case co Xhe Radon transform used in computerized tomography [Deans8l]; this may
provide important theoretical methods similar to those of Fourier analysis. Fourier
theory may aisc be applicable since the Hough voting pattern is similar to an optical
point-spread function [Brown82a].
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All Hough techniques consist of the following elements:

* A shape specification with N-dimensional parameter space P;

* An N-dimensional accumulator, A, representing P;

" A local element detector, E, applied to the image;
" A voting rule, V, mapping the information of E into A-

* A detection rule, D, specifying conditions on A that indicate instances of
the shape.

The GHOUGH program makes specific choices for these elements that determine its
range of application.

Two image regions have the same shape if the outline of one can be generated by a
combinatpion of translation, rotation, or uniform scaling of the other. Each such set
of equivalent shanew is represented by a template of normalized size and arbitrary
orientation. (The template is scaled to have unit radius relative to the reference
point described below.) A particular shape instance is thus represented by a particu-
lar template and four parameters: horizontal and vertical position, rotation, and
radius.

A template differs from a shape in that it has an associated reference point. The
reference point is selected by the user when the template is first digitized. (It could
be selected automatically, e.g., as the center of boundary mass.) Usually the refer-
ence is an arbitrary point near the center of the shape, but it can correspond to any
invariant location or feature. Although it need not be inside, computational problems
will be minimized if all distances to the boundary are small.

A template is also composed of disconnected points instead of a continuous outline.
The points are usually entered by tracing an image region, possibly with the aid of
spline interpolation. They can also be generated mathematically since they are com-
pletely independent of any gray-level information in the image. The points must
trace the shape clockwise, and the sequence is currently required to closed on itself.
The density of sampling along the shape outline is arbitrary, but the smoothness of
the representation may be critical. Boundary direction through a point is assumed
to be parallel to the line through the point's two nearest neighbors. A small error in
this direction can result in poor search performance because of magnification in
extrapolating to the template's reference position.

The generalized Hough technique compiles the template into a data structure called
an R-table. This is a sparse representation of the object-centered location and orien-
tation of each template edge point, stored as a list of lists. The main list is accessed
by the rotational orientation of an edge element relative to the horizontal axis. Asso-
ciated with this orientation is another list of vectors representing x and y offsets
from the edge element to the template reference point. Duplicate or multiple offset
vectors may be present. Together all the edge orientations and offset vectors are
sufficient to reconstruct the template.

In operation, an edge detector is applied to all pixel neighborhoods in an image win-
dow. At present a modified Sobel operator is used. A Sobel operator measures the
gradient at each image point by the root-mean-square response to two convolution
masks:

-1 0 1 -1-2-1
-2 0 2 0 0 0
-1 0 1 1 2 1
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The modified Sobel uses the sum-of-absolute-value combination of the two weighted
sums. Experience has shown that the two methods are nearly equivalent, although
the root-mean-square method is a little more constant in its response to rotated
edges.

The response at each pixel is compared to a threshold supplied by the user; if it is
above threshold, the detected edge is permitted to vote for likely shape centers. The
proper threshold setting depends on the scene content, the target to be detected,
and the edge detector itself. The modified Sobel detector typically produces a log
normal distribution of edge gradient strengths.

The edge direction is computed from the arctangent of the responses to the two
Sobel masks. A detected edge is then (conceptually) rotated by the minimum per-
mitted rotation for valid shape instances. This orientation gives an index into the R-
table to find the associated list of offset vectors. The accumulator cells correspond-
ing to each offset vector and permitted radius (scale factor) are incremented. (A
separate accumulator plane is used for each rotation and radius.) Then the edge
orientation is further rotated by the specified increment and the indexing and voting
procedure is repeated. This continues until the full range of permissible shape rota-
tions has been processed.

Thus any given edge-element may vote for many possible shape centers. The number
of accumulator cells incremented is proportional to the number of scale factors and
rotational angles permitted in the search. The accumulator cell with the most votes
indicates the most likely location, rotation, and radius of the shape.

Since there may be any number of shape instances present, including none, it is
necessary to decide which cells correspond to genuine occurrences. The GHOUGH
program uses two criteria: each reported shape instance must be a relative max-
imum within the four-dimensional accumulator, and must also be above some thres-
hold nui.i ' : of votes. A relative maximum is simply a cell with at least as many
votes as • ghboring cells. The threshold is required to prevent isolated votes (e.g.,
single votes surrounded by no others) from bsing reported. At present all cells meet-
ing these criteria are reported as shape instances, with those having the most votes
reported first. Any higher level analysis is left to the program receiving this list of
"possible target hits."
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Section 4

Implementation

This section documents the SRI Testbed implementation of GHOUGH. It is intended as
a guide for system maintainers and for programmers makin modifications to the
GHOUGH system. The terms used in this section may be a little cryptic: they are either
defined elsewhere in this report or come from the supporting operating systems.

The SRI Testbed uses the EUNICE operating system, which is a Berkeley UNIX' emulator
for VAX computers using DEC's VMS operating system. EUNICE was developed at SRI to
permit simultaneous access to UNIX and VMS software and system services, and to
implement improvements to UNIX such as significantly faster image I/O. EUNICE is
now a commercial product maintained by The Woolongong Group in Mountain View, Cali-
fornia.

The GHOUGH paciage is currently compiled as a single file, gqhugh.c, containing a
main program and several subroutines. The underlying algorithm is very little changed
from the original University of Rochester implementation, but the command inter-
preter, help system, and supporting image access and display utilities are all new.
These external routines are all part of the Image Understanding Testbed environment.

The main program and related files are in directory /iu/tb/src/ghough. Subdirec-
tories help and srchhalp contain the text files used by the help system at the top com-
mand level and during the search command. Directory tempzae contains predefined
template files, and demo contains some simple shell scripts and "ground truth" files
used in the evaluation effort.

Source code and help files for the CI driver are in /iu/tb/lib/cilib. For extensive docu-
mentation type "man ci" or run "vtroff -man /iu/tb/man/man3/ci.3c". 'Te CI driver
uses command-line parsing routines in cilib/cmuarglib and in /iu/tblib/subib/asklib;
both of these may someday be replaced by the Testbed argument pazing routines in
sublib /arglib.

Other utility routines contributed by CMU have been distributed to
/iu/tb/lib/dsplib/gmrlib, /iu/tb/lib/imglib, and /iu/tblib/sublib, and are docu-
mented in /iu/tb/man/man3. Some of these have been modified or rewritten for the
Testbed environment: the image access code, for instance, reads Testbed image
headers as well as CMU image headers.

To compile the GHOUGH program, just connect to this directory and type "make". You
may type "make -n" to see what will happen if you do this. Additional options are
documented in the header of the makefle.

The program contains two edge-detection routines. The first is a modified 3x'd Sobel
operator; the second is a generalized 3Nx3N Sobel operator, where NxN block averages
are substituted for the single pixel values used in the 3x3 Sobel. Both routines are

1UNIXis a trademark of Bell Laboratories.
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meant to be applied at arbitrary image positions, as opposed to being optimized for
moving-window application to an entire image plane. The interactive driver allows
either edge operator to be applied to a'1y image point. (This may help in threshold
selection.)

The original contribution used a 6x6 version of the Sobel edge detector in which each
W subsquare was averaged to produce the 3x3 pattern used in an ordinary Sobel edge

detector. This gave noise immunity and increased accuracy for large targets at the
cost of much slower operation and of poor performance on small targets. The Testbed
version has been recompiled to use the standard 3x3 operator.

The search algorithm itself is separated from the user interface routine that gathers
the search arguments and checks them for errors. The search algorithm could thus be
invoked by any other program that set up the proper environment. It takes an image
and several arguments as input and returns an accumulator as output.

The accumulator analysis has also been separated into independent modules. First the
accumulator is searched for local maxima. The list of maxima is sorted and then
passed to a deeper level of the CI driver. The user can then apply any sequence of
analysis and display commands to the sorted list.

The original contribution reported only the single shape instance receiving the most
votes. SRI has modified the testbed version to report a list of matches ordered by the
number of votes. This permits identification of multiple instances in one image, as
when finding oil storage tanks in aerial imagery. It was also necessary to write routines
for examining and saving the list of matches, and for comparing the list to a ground-
truth database.

GHOUGH demonstrations have been set up in subdirectories lake, circle, and ellipse of
/iu/testbed/demo. Just connect to the appropriate directory and run the demo com-
mand.

The demo program in the lake directory is fully automatic: just type "demo' and it will
proceed to find the lake. You may also run the display script to show the results of a
previously run demo script. For more interaction, invoke the GHOUGH program
directly (e.g., by typing "ghough) and issue the "< lake.cmd" command; you will then
be asked to delimit a search area with the cursor and to provide other parameters and
display commands.

The circle and ellipse directories are very similar, except that there is no predefined
interactive version of the demonstrations. The ellipse finder takes a particularly long
time to run, so you should normally just run the display sequence.
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Section 5

Program Documentation

This section constitutes a user's guide to the GHOUGH package as it is implemented on
the SRI Image Understanding Testbed. As with any reference manual, it has occasion-
ally been ne:!essary to refer to terms before they are defined and discussed in detail. A
preliminary scan through the section may be helpful on the initial reading. Additional
information is available on-line, as described below.

5.1. Interactive Usage

The GHOUGH algorithm is currently embedded in a subroutine to fill the accumulator
with votes and another subroutine to analyze the vote pattern and report back likely
shape instances. These routines are called by ghough.c, a driver package that allo-
cates the accumulator array, sets up the required environment, and interacts with
the user. The following is a sample session using the GHOUGH program.

ghough

This invokes the program. You need not specify the full directory path name for the
executable file if the path is given in your standard ".cshrc" shell startup file. If you
have no startup file. you may have to specify "/iu/tb/bin/ghough" or some other full
path name.

Generalized Hough Transform

The system responds and waits for commands. GHOUGH uses a version of the CI
driver, so that built-in features of that driver are available. Additional commands are
provided for the GHOUGH image analysis capabilities.

draw search
erase select
open sobel
print template
quit trace

help

> ,-

verbose no

An ' command lists all of the GHOUGH commands, and an '*= command will list any
user-accessible variables. Typing 'help' will give further information on the CI
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command interpreter and the help subsystem, and 'help 0' will give a list of all avail-
able help topics. Additional information may be obtained by typing help and the
name of a topic. For example:

> help menu

draw ---------- draw the template.
erase --------- erase the overlays.
open ---------- display the input picture.
print --------- print the template table.
quit ---------- clear the display and quit.
search -------- find instances of the template shape.
select -------- select one of the four overlay colors.
Zobel --------- find Sobel gradient at ipecified point.
template ------ read a template file.
trace --------- trace a shape to create a template.

Use "verbose = yen" to enable additional printout
during searches.

> help usage

Comunnds issued in the following order should work.

open ---------- display an image.
template ------ read a template file.
draw ---------- display the template shape,
search -------- search for instances of the shape.
quit ---------- clear the screen and terminate.

To open an image file and display it, type

> open

Image file: <bw.imS>

The default name is bw.img, but any other name may bp specified. The image name
may also be given on the command line, as in "open /iu/tb/pi/plant/bw.mg". The
image may then be used for tracing a new template or for searching using an existing
template.

To create a new template:

> trace

Draw a clcsed shape (clockwise).

Use <CR> to enter a point. q to quit.

Specify the shape center, then <CR>.

Reference point: [256, 2568
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Enter points with <C2>. terminate with q:

Point 0: [156, 256]

Nmnber of points entered: 46.
Haximnm radium = 63.49.

Output file name: <template.dat>

The x and y components of the distance between each edge point and the arbitrary
center of the shape are stored in a template file. For help in using the cursor, type
*help cursor.'

Any number of points may be used to outline the shape -- the more points that define
a shape, the more are available to vote for the shape. A large number of points in the
R-table also causes GHOUGH to run slower. One is faced with a trade-off between
computation time and precision in detection of the desired shape.

> template

File name: <template.dat>

An R-table is built from a stored template file. The default ifie name is template.dat,
but you may specify any valid template file. This command is not needed if you have
just entered a template by tracing an image object.

To draw a shape instance in the display overlay:

> draw

Center column: (0 to 511) <364>
Center row: (0 to 511 <128>
Template angle (degrees): (-359 to 360) <0>
Template radius (pixels): (1 to 511) <60>

The default position is in the lower-right quadrant of the screen, which is convenient
if the image you have open is 256x256 or smaller. The template angle is a counter-
clockwise rotation relative to the original orientation of the traced shape. Template
radius is the radius of the largest circle centered on the reference point that just
contains the shape.

To run the edge detector over the image and search for shape instances:

> search (160,90),(210.170)

This command begins a search for the template shape in a window with the specified
lower left and upper right corners. If the corner coordinates are not specified, they
will be requested interactively, you may then use the cursor to indicate the process-
ing window. The remaining arguments of the search command are given in interac-
tive form below.

The search command builds an accumulator and fills it with votes for template
instances. The accumulator may be regarded as a stack of two-dimensional arrays,
one for each combination of acceptable template size and rotation. The stack of
arrays is registered with the image window specified above. Shapes to be found need
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not be entirely within this window, but the window must cover the shape centers.

Horizontal rcsolutlon: I to 51 <1>
Vertical resolution: (1 to 81 <1>

You are next asked for the spatial resolution of the search. Specify single-pixel reso-
lution [the default] for the finest resolution currently available. Use a larger spacing
in either direction for a coarse search that uses a smaller accumulator and requires
less search time.

Minimum rotation (degrees): (-359 to 360) <-3>
Maximum rotation (degrees): (-3 to 360) <3>
Angular Resolution (degrees): (I to 7) <1>

Specify the acceptable range of template rotations and the angular resolution of the
search. You may specify any whole number of degrees. Here we have allowed three
degrees on either side of the original template orientation.

Pinimum radius (pixcls): (1 to 999) <60>
M,%ximnm radiu (pixel.): (60 to 999) <66>
Radius resolution (pixels): (1 to 7) <2>

You r -- L also specify the acceptable range of radii for instances of the template
shape. This is a distance in pixels and not a magnification factor. The radius is that
of the largest circle which just contains the shape. The program is expecting
floating-point numbers and will quantize the template radius to any specified resolu-
tion.

Edge threshold: (0 to 999) <120>

You must specify the weakest edge gradient that will bf. allowed to vote for potential
template instances. You may specify 0 if you want to ase the best edge fit at every
image pixel, but this will slow the search and raise the roise level in the accumulator.
Fewer edges are considered as the value of the threshold increases. You may want to
use the Sobel ccmmand (before invoking search) to establish a practical value for the
threshold.

Contrast (b/w/m): <black>

Specify the contrast of the figure as black, white, or mixed. This argument deter-
mines how the edge gradient will be interpreted. If the figure appears dark on a light
background then you should specify black; if it is light on a dark background then
specify white. You may specify mixed to include either or neither of the conditions.
each edge element will then vote for both a dark shape and a light one.

Examining the edge structure ...

The program is now searching through tne window looking for edges above the
specified strength threshold. Each edge that it finds is displayed on the monitor
screen.

Searching for local maxima ...
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The program is now searching the accumulator for local maxima. A list of these
potential template instances will be made available for further analysis.

37 maxima found; highest count is 5.

Enter display commands:

The program has found 37 potential hits, and has created a new subcommand inter-
preter so that you may study the results before terminating the search routine. To
see the available subcommands:

> help menu

above --------- display matches above a given count.
display ------- display a particular match.
erase --------- erase the overlays.
first --------- display the first n matches.
level --------- display a particular level of matches.
quit ---------- clear the display and quit.
save ---------- save the overlay as an image file.
ucore --------- tabulate "hits" in a ground-truth file.
select -------- select one of the four overlay colors.
top ----------- display the first n levels of matches.

Use "symbol = yes" to turn on full-shape display, "no"
to display only center points (except for the "display"
command).

This 'help menu' command shows the names of commands available at this level.

Enter "*' or '*= for a more concise list, or 'help topic' for more information.

> save edges.ovl

If you want to save the edge overlay you should do it now. The current program can-
not recreate this display if you go on to something else.

> first 4

# Column Row Angle Radius Count
1 151 141 2 66.0 5
2 181 143 0 61.0 4
3 181 144 -2 64.0 4
4 151 143 0 62.0 4

Here we have listed the first 4 local maxima. The count field shows the number of
votes that each match received. (Note that the fourth is not necessarily better than
the fifth.) The centers of these four matches are displayed on the screen.
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> top 2

Column Row Angle Radius Count
1 181 141 2 66.0 5
2 181 143 0 61.0 4
3 181 144 -2 64.0 4
4 181 143 0 62.0 4
5 181 139 0 64.0 4
6 181 144 -1 64.0 4

The top command displays a number of threshold levels in the accumulator. Here
the top two levels are displayed. We could save this display with a save command.

> level 1

J Column Row Angle Radius Count
1 181 141 2 66.0 5

We can also display a single threshold level. 'Top 1' and "level 1' give the same
result, but the two commands differ for larger arguments.

> display 1

# Column Row Angle Radius Count
1 181 141 2 66.0 5

Here we have displayed a particular match (the first). Both the shape center and the
outline are displayed on the monitor screen.

You may also use the 'score' command to compare detected shape instances with a
previously existing ground truth file. This file is currently just a list of all known
instances of a particular target type giving position, rotation, and radius; for the lake
in the plant image, this is just

181 143 2 64.2

The score command will search for this target among the first 40 detected shape
mstances. These commands are particularly useful for later evaluation of GHOUGH
runs executed as background or batch jobs. For our sample session:
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> score lake.tru

9 Column Row Angle Radius Count

11 143 2 64.2 (known)
1 181 141 2 66.0 5
2 181 143 0 61.0 4
3 181 144 -2 64.0 4
4 181 143 0 62.0 4
5 181 1t9 0 64.0 4
6 181 144 -1 64.0 4
7 182 142 -1 60.0 4
8 182 142 0 60.0 4
9 6i1 143 0 60.0 4

I of the I known targets were found
in the best 37 Hough maxima.

This example shows the lake being reported as many matches, each differing only
slightly in its combination of parameters. The GHOUGH program recognizes these
matches as being equivalent, but does not average or otherwise combine them to get
a more accurate determination.

The quit return terminates this driver level and gives control back to the search rou-
tine. The search routine offers one more service before returning control to the top-
level command driver.

> quit

Output a Hough plane? <no>

A plane of the accumulator array may be output as an image file for later display.
This can be useful for debugging or for getting a feel for the nature of generalized
Hough analysis.

> quit

Finished.

A quit command terminates the session. The monitor screen is cleared and the
display processor is freed for other users.

5.Z Batch Execution

The GHOUGH program offers two methods of invoking prestored commands. The first
is the invocation of CI command files. For example, you might give the command

> <lake.cmd

where the file lake.cmd contains the commands
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open /iu/tb/pic/plant/bw. img
template /iu/rocheuter/template/lake2.dat
draw 384,128,-45,45.0
search , .1.,.-3,3.1.60,66.1.120.'?lack.no

In this case the GHOUGH program will open an image, read a predefined template,
display the template, and search for matching instances. You will be asked for the
search area since its coordinates were omitted from the search command. You will
also be able to enter interactive commands to examine the search results and save
the corresponding graphic displays.

The second method is to drive the entire GHOUGH session from an operating system
script. A UNIX C-shell script might, look like:

# Run the lake demo.
Shough <<I

open /iu/tb/pic/plantbw.irrg
template /iu/rochester/template/lake2.dat
draw 384. 128,-45,45.0
verbose = yen
search (160.90),(220. 70), I,,-3.3.1,60,66,.120,blackno

save edge.ovl
symbol = yes
first 20
top I
save topl.ovl
top 4
save top4.ovl
diuplay I
save matchi.ovl
score lake.tru
quit

quit

This script is designed to run without user interaction. It does display its output on
the terminal and on the display screen, but does not wait for you to look at the data.
(You may add 'push.level' commands wherever you want it to pause and wait for
commands. A quit command will then return you to the script command file. Speci-
fying 'quit 2' will terminate the entire run.)

The script example above contains save commands to save .copies of selected graphic
overlays for later viewing. To save the typed terminal output you should pipe the
standard output to a Me. The UNIX maethod for doing this is to add" >session.log" to
the ghough command within the script or to the UNIX command line that invokes the
script. You may also use the UNIX 'script' or %tee' commands to route the typed out-
put to a file and to your terminal.

The actual submission of this shell script is described in the UNIX Program er's
Manual. You should run it in foreground mode if you want to interact with the pro-
gram. If you run it in background mode, be sure to pipe the output to a log file so
that it won't appear on your terminal. On a UNIX system you can monitor the log Me
rha"rinat or'ut. (l a. 'cate tr 'tal -f" ever yt. r -hin is r-
ning smoothly, and you can halt the process or reconnect it to your terminal if you
wish. At present there is no way to turn off the GHOUGH display commands, although
this option is planned.
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Section 6

Evaluation

This section documents the performance of the GHOUGH program in several hundred
test runs on a variety of aerial imagery. We have extracted rules for using the current
system and have evaluated its characteristics.

8.1. Parameter Settngs

GHOUGH search options available to the user are presented below. Typical parame-
ter values are specified and the effects of different values are explained.

Image Content

The GHOUGH program is at its best finding large, well-defined silhouettes in otherwise
unvarying imagery. Since this is not a very useful talent, it is well that the program
is also able to find partially hidden objects in noisy or blurred images. Any type of
imagery is suitable as long as a sufficient portion of each target boundary is detect-
able. The objects must usually be obvious to a human before GHOUGH will be able to
find them reliably.

The quality of object detection can be partially controlled by setting a threshold
(described below), but is ultimately limited by the edge detector used. The modified
Sobel detector currently in use works very well on most imagery, but is not as sensi-
tive as an adaptive or task-specific detector might be. It does not give subpixel reso-
lution, and the gradient angle is not very reliable (especially for weak edges).

A particular requirement with this edge detector is that object edges be sharply
defined. Objects with gradual, uncertain boundaries (e.g., reservoir outlines or FUR
targets) or strong internal gradient3 (e.g., domes or "hot spots") will usually be
located, but the position and orientation reported may not match that chosen by a
human. The reported shape may also depend on the edge threshold used.

The requirement of sharp edges does not imply that smooth, continuous object boun-
daries are required. The program is quite tolerant of noise in the outline and is able
to find irregular, incomplete, or discontinuous shapes. The circle template, for
instance, often responds to forest clearings, tree tops, road intersections, and curved
embankments, as well as to square buildings and to image "hot spots." The irregu-
larities in dhese image structures spread the vote cluster in the accumulator, but the
local maximum may still be above the general noise level.

Shadow edges usually fit the requirement for strong, sharp edges. It is often easier
to find a shadow than to find the object that cast it. This may be a useful cueing
technique, but must be used carefully to avoid reporting objects at incorrect loca-
tions. A similar problem exists with high-resolution imagery: the position reported
for a part of an object (2.g., the circular top of a storage tank) may not correspond
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to the position of the whole object.

These characteristics mean that the program is best suited for three tasks: locating
industrial parts in high-contrast imagery; counting numerous, obvious, similar
objects such as storage tanks, barracks, or microscopic particles; and precisely posi-
tioning a template when an approximate location is cued by the user or by another
system. Even for these applications, the program must be supervised and its output
edited. Other applications will require further development of the technique.

Template:

Template shape is dictated by the targets being sought. Although this is not under
user control, it may be helpful to understand the effect of shape complexity on
GHOUGH performance.

A template is first compiled into a R-table, and all matching is done against this
data structure. The R-table is sorted by edge angle, with one or possibly more shape
center offsets recorded for each angle. For a convex template these offsets form an
orderly progression matching the order in which the points were traced. For an invo-
luted template (e.g., a star-shaped outline) they jump around as points from one part
of the trace interleave with points from another part. The net result is that, during
edge processing, the votes from a particular image edge also jump around as
different rotations are considered. This increases paging activity and total execution
time, but has very little effect on detection performance.

The performance of a template depends only weakly on the number of points it con-
tains. The density of points along the template perimeter determines the accuracy
with which template edge angles are known. This is because the angle at a particular
template point is computed as the direction between its two neighbors. The density
of points also determines the accuracy of accumulator votes since the template point
used by an image edge element for its voting is the one with computed angle nearest
to, but larger than, that of the image edge.

These two effects cause spreading of the accumulator votes for a given shape
instance. For small targets ke.g., seven pixels in radius) the spread is slight, but pos-
sibly significant because the number of votes is small. For large targets (e.g., 64 pix-
els in radius) the spread is much greater but is balanced by the large number of vot-
ing edges. A template with as few as eight points can be used to find targets, but will
find a large target only if one of the accumulator planes represents exactly the right
rotation and radius and the density of detected edges is almost optimal. For more
robust operation the number of template points should be at least half the target
radius. Generally 32 points are quite sufficient.

Contrary to intuition, using more points in the template neither increases the execu-
tion time significantly nor improves performance. The only effect on execution time
is that of indexing into the R-table to find the closest template edge: this is currently
done by following a chain of pointers until the next larger angle is found, but the pro-
gram could be written using a hash table or array structure for the R-table that
would have a constant (and faster) accessing time.

The effect on performance Is that more accurate template edge angles slightly
improve vote clustering and rotational accuracy. Improved vote clustering is only
important in borderline cases and might be better achieved by convolution smooth-
ing of the accumulator prior to (or during) detection of the local maxima. Rotational
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accuracy is more a function of target shape than of the accuracy of individual edge
angles. Further, too dense a template will suffer from quantization effects as
described below.

The most common method of creating a template is to trace a known target. The
GHOUGH program has a cursor driver to make this possible. Unfortunately, the posi-
tion of the cursor can only be read to the nearest pixel. For a sparse outline of a
large target this makes no difference, but for a dense outline it means that a tem-
plate point will usually differ from each of its neighbors by only a single vertical or
horizontal pixel (or both). Thus the edge angle computed using its neighbors will usu-
ally be a multiple of 45 degrees. This introduces severe quantization errors that
make it difficult to extrapolate the shape center from a given image edge element.

Another consequence of this quantization error is that the R-table will contain only a
few angles, each having a list of many corresponding shape center offsets. This is in
contrast to a normal template having many angular entries with only a few having
multiple shape center offsets. The quantized template results in far more votes
being cast, but the voces are very scattered and serve mainly to increase the accu-
mulator noise level. (One te.-t with a 256-point template produced cells with noise
counts of 37 votes, compared iith only 8 votes for a similar 32-point template.)

Four solutions to this quantization problem are obvious:

* Use fewer template points.
* Expand (zoom) the prototype before tracing it.
* Smooth the entered points using spline functions.

* Use each entered point as an approximation, and compute the true edge
position and angle from the underlying image.

All of these methods could be used together. Only the first is currently supported by
the GHOUGH software.

The quantization effect also occurs naturally for angular template shapes. A square,
for instance, has four principal edge directions plus four minor directions at the
corners. Each of the major directions is associated with numerous center offsets,
and smoothing methods will not change tuis.

The quantization effect for an angular template increases the accumulator noise
level. (The number of votes for a 10-point by 10-point square template is about nine
times the number for a similar, smoothly curved one.) It also produces some
surprising rotational effects due to angular rounding when indexing into the R-table.
Suppose that a so- ire template is used to find a square target against a uniform
background. If bot, are aligned, the edges from the image will vote for points along
the sides of the template square. If the image is tilted, say, 40 degrees to one side,
the edges will vote for exactly the same template points and there will be little harm.
If the image is tilted one degree in the other direction, however, the image edges will
all vote for the corner points in the template. This will completely change the pat-
tern of votes in the accumulator. The algorithm is robust enough that it may still
report the correct position for the square, but the estimate of the rotation angle is
likely to be incorrect.

This effect is noticeable when using a "corner" template to locate right angles in an
urban scene. In one case the saarch orientation had been set for zero to 270 degrees
in 90-degree increments. GHOUGH found a great many right angles, but reported
some of them at 90 degrees off the true orientation. Further, any nearly vertical or
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horizontal building edge could produce a spurious corner if some of the edge element
directions were rounded up 90 degrees from others. This rounding effect will have to
be corrected before GHOUGH can be used as a reliable corner finder.

Search window.

The user is asked to define a search window by specifying or pointing to a lower-left
pixel and an upper-right pixel. The box connecting these defines an edge-detection
area. The number of possible edge locations is thus

Window points = (columns)(rous)

The current 3x3 edge detector requires an additional one-pixel border of data; for
this reason the edge-search window cannot be the entire image.

The user must also supply horizontal and vertical "search grains." These affect only
the accumulator, not the edge-detection process. A search grain of 2 in each direc-
tion means that a single accumulator cell will be used for each nonoverlapping group
of four pixels at unit search grain. This reduces the accumulator storage by a factor
of four, and also reduces execution time, but limits the accuracy with which a shape
instance may be found.

The number of positions at which a shape could be reported is

Template positions = secnoch roizn

for a square search window with side length divisible by the search grain. The 2 sub-
tracted from the quantized window size represents a one-cell border around each
accumulator plane. This border is used for indexing efficiency during searches
through the accumulator. Future versions of the program may eliminate it or add it
on instead of subtracting it from the specified window.

The general rule for setting the window size is to use the smallest possible window. It
is usually faster and more accurate to do several small searches rather than one
large one that includes targetless areas. A preliminary coarse search could be used
to cue areas for more accurate searches.

A coarse search gives less positional accuracy than a fine one, but does not neces-
sarily give poorer detection. Small errors in estimating edge directions (in either the
template or the image) can produce large errors in estimating the shape center posi-
tion. Often the smoothing due to spatial quantization overcomes the resulting cluster
spreading. The search grain should be set to the largest value that will give accept-
able resolution: 10% of the minimum target radius is suggested.

Orientationr

The user is also asked to specify the acceptable ranges for rotation, and radiu-s, Each
is given as a minimum, maximum, and increment, where the increment behaves very
much like the spatial search grain specified above. Again, specify the coarsest
search that will give acceptable information. If targets differ greatly in size, it is
advisable to do one search for small targets using a small radius increment and
another for large targets using a large increment.
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rhe total number of orientations permitted is

Orientationis = (rotations) (radii)

I 3ch orientation requires an accumulator plane with the number of template posi-
t. ans given above; thus

Search volume = (orientatirns)(template positions)

t additional one-cell border has been added to the search volume (rather than sub-
tracted from it), so the total memory required is

Accumulator planes = (rotations +2)(radii. 2)

cumulator volune = (window points) (accumulator planes)

Debction performance in each plane is nearly independent of that in adjacent planes
unless the rotation or radius increments are very small. Adding additional range or
resolution in x, y, rotation, or radius does not degrade performance in the other
dimrnasions. It does result in more potential "hits" being reported for the same
number of targets because the Hough voting method often produces four-dimensional
ridges or plateaus of identical counts. Any such cefts that are not adjacent to higher
cell counts will be reported as local maxima. Thus a finely quantized accumulator
will o'ten produce a pattern of false matches with lower counts around the true
match cell. A fairly sophisticated four-dimensional analysis technique would be
needed to suppress these false matches.

Template radius is specified as a floating-point number and may take fractional
values. Al othe: parameters are currently restricted to integer values. Requesting
3ubpiydl accuracy in the radius will occasionally improve detection performance, but
the true target size will still be estimated poorly because target center position can-
not be kncwn to subpixel accuracy. The chief result of such a request is to increase
accumulator size and execution time.

Threshold-

The GHC'UG? program uses a modified Sobel gradient operator for edge detection:
the root nean square of the horizontal and qertical gradients has been replaced with
a sum of absolute values to make the operator faster. Gradients, or edge strengths,
computed with this operator have an approximate log normal distribution with an
image-dependent peak somewhere from zero to 1800. An image of cloudy sky may
have a peak .aear ten: modal edge strength in a low-angle urban scene may be 200
(depending or contrast ratio).

The edge threshold should ideally be set just low enough to detect most target edges.
Any additional edges dete.ted in the scene only contribute to accumulator noise
level, making it harder to detect true matches. In practice one cannot determine
such a threshold level without having previously located the targets. A more useful
r-le -i to clot the theshold aeeort_--r-- to image type or previously measured edge
density.

The number and density of edges detected in an image are sigmoid (s-shaped) func-
tions of edge threshold similar to cumulative frequency histograms. GHOUGH
operates best when 10% to 20% of the pixels are classified as edge points, although it
will usually work well at any edge density above 6%. Some typical threshold values to
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achieve specified edge densities are:

Scene Type 8% 12% 25% 50%

Cloudy sky 42 35 28 20
Aerial terrain 160 120 80 40
Aerial target area 200 180 120 60
Low-angle urban 260 200 140 90
Forest cover 280 220 160 100
Aerial urban 720 600 480 340

A more accurate determination may be made using the verbose option of GHOUGH to
print out the edge density found at a given threshold. This test can be done on a
small image area to choose a threshold for the entire image. (Future versions could
use an adaptive threshold that varies with edge density in each portion of the image.)

Occasionally the position, rotation angle, or radius reported for a target will vary
slightly as a function of edge threshold. This is because the spatial distribution of
edges in an image may vary with the definition of what constitutes an edge. GHOUGH
gives equal weight to all edge elements regardless of their relative strengths or con-
tinuity. This is both a strength and a weakness of the algorithm: it permits shapes to
be found in very noisy imagery, but reports nonintuitive detections for smoothly
varying intensity regions such as hot spots, specular reflections, rounded surfaces,
and shorelines.

In general it is better to use too low a threshold: this will increase chances of finding
target edges while only slightly increasing noise level, and the edges found are likely
to be the most reliable ones. The main drawback is that low thresholds increase the
time required to fill the accumulator with votes. A reasonable starting guess is a
threshold of 120.

Contrast setting:

The user is also asked whether to search for dark (black) objects on light back-
grounds, light (white) objects on dark backgrounds, or both (mixed). Specifying
'mixed' will increase execution time and slightly increase the accumulator noise
level. Use the most restrictive specification that will do the job.

6.2. Performance Statistics

This section documents the performance of GHOUGH during Testbed evaluation trials.
Formulas are given, where appropriate, but most of the information is subjective.

Edge processing time:

The processing time (in seconds) requred to compute edge locations and increment
the corresponding accumulator cells may be modeled as
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Edge time = .00036(wuindow points) +.0053(edges found)

+.00019(accumuLator entries) +(additional paging time)

where

Edges found = (windw points)(edge density)

Accumulator entries = (edges found) (entry density)

Entry density = (accumulator planes)(contrasts)

(quantization factor)(border effect)

The quantization factor is unity for a circle or smoothly varying template (whether
convex or involuted), and is approximately one eighth the number of template points
for a square. The border effect, or percentage of votes falling within the accumula-
tor, is more difficult to estimate. It is typically near unity, but may be less than .25
when a large target is sought in a small image window.

Window points, edges found, and the number of accumulator entries are all nearly
linear predictors of each other, but the proportionality constants depend on edge
density and entry density. The "edges found" coefficient is slightly dependent on
template density and on rotation range because of the time required to locate the
proper angle in the R-table. A fraction of the time for "accumulator entries" is due
to instrumentation code inserted for the evaluation; the rest is largely spent comput-
ing cell addresses.

A "normal" amount of virtual memory accessing is included in the above formulas.
For very large accumulators there will be substantial araounts of additional paging
time. This time increases with accumulator volume, edges found, system load, and
with various system parameters. It also increases with increasing template radius or
rotation range because thc votes for template centers "jump around" more in the
accumulator. Involuted or angular template shapes may also cause paging for this'
reason.

An additional penalty due to this extra paging is not included in the above equation:
"real time" spent waiting for page requests to be satisfied. If other jobs are running
on the system, this time may not be wasted, but it will delay completion of the
GHOUGH task. For very large accumulators (e.g., two million cells), the real time on
an unloaded system may be several times the processing time used,

Accumulator search time:

Let
,4ce mn at o density = accumulator entries

accumulator volume

be the average number of entries in an accumulator cell. For densities below 0.5 the
time required to search the accumulator for local maxima is almost entirely that
required to examine each cell once and to sort the resulting list of maxima. This is
because few cells reach the threshold of three counts required for further process-
ing. A good formula is
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Analysis time = .000042(search volume)+.0025(maxima found)

This time is typically small and nearly constant.

For accumulator densities above 0.5 the search time depends on the density. Two
opposing tendencies may be at work: more cells with at least three counts are found,
but, with increasing density, the average number of neighbors that must be checked
decreases (since there is a greater chance that a given neighbor has a count greater
than the original cell). The net result may be modeled as

Analysis time = 10-(search volume) (.08+2.6log(l+accumnulator density))

+additional paging time) +. 0025('na.imafound)

where the logarithm is to the base 1 . The additional paging time depends on accu-
mulator size, compactness (i.e., search volume/accumulator volume), system load,
and other system parameters. It may exceed 60 seconds in some cases, but is usu-
ally much smaller than the paging time during edge processing.

Local maima

The number of local maxima in the accumulator search volume is dependent on the
"noise statistics," or the distribution of false counts in the accumulator. For unit
search grain and a convex template, the number of maxima having at least three
counts is approximately

Maxima .023(search voeume) 8( 1 +accumulator density)2-1

This number ranges from none to more than 6000. (The reporting of multiple max-
ima was added to GHOUGH as part of the Testbed evaluation effort. Future versions
may use an adaptive threshold to prevent such numbers of false "hits" from being
reported.)

At coarser search grains, the number of maxima drops much faster than this formula
brings it up. Increasing spatial cnarseness in the accumulator increases the number
of local maxima until the accum dlator density is about 1.0, then decreases it until
there is only one maximum (or none) in the accumulator. As a rough approximation,
using a search grain of two may double or halve the number of maxima found with
unit search grain, further halving of the resolution will drop the number of maxima
by a factor of five.

An angular template will also produce accumulator densities high enough to invali-
date this formula. Halving the search resolution will again cause the number of max-
ima to drop by a factor of five or more, with no special exemption for a search grain
of two.

Noise threshold.

The highest cell count due to noise is related to the search volume since larger
volumes mean more chances for coincidental clusters of votes. Scene content (other
than edge density) has little effect on noise statistics. A reasonable model is

Noise = 2.04(se arch volume).")( 1+ accumulator density)°.s-1

which is usually accurate to within one count for noise counts of ten or fewer. For
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most purposes, the noise threshold is small and nearly constant, but use of coarse
search grain can push it into the hundreds. This formula seems to work for angular
templates, but Cversampling of a circular template (producing severe quantization
errors) can increase the noise level by 50%.

The number of "noise maxima" found at successive threshold levels tends to increase
by a factor of five. Thus a single cell with ten votes will be accompanied by five cells
with nine votes, 25 with eight votes, etc. This pattern is not particularly reliable, par-
ticularly at high accumulator densities, but it could be used as the basis for an adap-
tive threshold: increase the threshold and discard all lower local maxima whenever,
say, 50 maxima have been found above the current threshold. A tighter limit could
be used if the number of valid targets could be estimated.

Detection performance:

As yet there exists no quantitative model for the number of votes required to indicate
a shape instance. Some of the factors controlling the maximum count due to a tar-
get match are: average accumulator noise count, template shape, quantization fac-
tor, density of template points compared to positional and orientational resolution,
target radius, position of the target relative to the quantized spatial grid, width of the
target border and gradient across it, and percentage of border edges detected.

The GHOUGH program does not currently offer a threshold for automatically screen-
ing good matches from bad ones. If one were installed, the proper setting would be
just above (or perhaps just below) the computed noise threshold. Higher-level intelli-
gence would still be needed to screen matches reported by GHOUGH.

GHOUGH match reliability has been estimated by searching for targets (circles,
ellipses, and a lake outline) in various images that did, or did not, contain such tar-
gets. A target was considered to be "found" if GHOUGH reported one or more
matches within 15% of the true size at a location close enough (again. 15% of the true
radius) to the known position. Angular accuracy was not checked, nor was the cell
count compared to any computed noise threshold.

In one series of tests, the program searched for twelve small, nearly circular ellipses.
The aspect ratio, rotation, and radius were known, although some searches permitted
a small range for each parameter. The search window was either 128x128 or 254x254,
and the "known" positions of the twelve targets were defined within each of these
search windows (even for images without targets at these positions). A true "hit" or
a false match (depending on the image) was reported if the "known" targets were
among the first 20 local maxima.

False matches in images not containing targets were rare: no more than one of the
"known" targets was ever reported, and these false matches had vote counts within
the noise level. The false matches occurred in a view of urban San Francisco with the
edge detector threshold set for very high edge densities (.45 to 1.00).

True matches and missed targets can only be reported for the scene containing the
targets. For most runs this was Lhe ph rd pietufe provided with thrIgin-- l-'I-I I-lU
program. It was very difficult to locate all twelve elliptical storage tanks in the plant
image, probably because the edges are blurred and the radius is only 7 pixels. Detec-
tion of all twelve required a search grain of 2 as well as a critical edge detector thres-
hold. At unit search grain, eleven of the twelve could be found at edge threshold 120,
and eight or more were found with any threshold of zero to 180 (edge density 1.00 to
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.10).

The above tests involved searching for dark objects on light backgrou'nds. Setting the
contrast parameter to 'nixed' doubled the accumulator vote density, with a
corresponding increase of a few counts in the noise level (e.g., from si: to seven).
This did not prevent finding eleven of the twelve storage tanks (at the optimum edge
density) since they had as many as 14 votes. The more general search also turned up
a few white objects against dark backgrounds that were quite reasonable "hits."

Circles were also sought in various aerial images contrianing cylindrical storage tanks.
Several unages of Fort Belvoir showed multiple white .orage tanks ranging from two
to 19 pixels in radius. These tanks were extremely obvious to a human observer, but
the GHOUGH program had great difficulty in finding them. Various parameter combi-
nations were tried, but some targets resisted detection even when the search was
tightly constrained to exactly the right location and size. Further, it was impossible
to predict from visual appearances which of the tanks would be difficult to find; nei-
ther size nor contrast against background was a good criterion.

For example: the ftbla image contains 29 clearly visible storage tanks in three clus-
ters. The circular (or dome) tank tops range from two to six pixels in radius. A file
was constructed giving the true location and radius of the tank tops as presented in
this image. Attempts to find all of the tanks in one run proved futile. Some tanks
were missed in each cluster, and one cluster was particularly difficult to match.

The obvious next step was to search through each cluster independently. This did
improve detection probabilities, but results were still disappointing. One representa-
tive search over a cluster of 14 tanks located only three of the targets (to within 15%
of true radius) in the first 40 matches. These matches were accompanied by
numerous "almost" matches and a few wild "hits" that were difficult to perceive
even after they were pointed out.

The ftb1b image is an enlargement of this cluster of 14 storage tanks. The circular
tops range from eight to 19 pixels in radius. A search similar to that above was done
using unit search grain and unit resolution in radius to find white circular objects.
This time the "score" function reported multiple matches on six of the 14 tanks.
Another three tanks were almost matched in the first 40 local maxima, but either the
ground truth file was slightly inaccurate or the 15% scoring tolerance was too tight
for the score function to report them. The remaining five tanks were matched very
badly or not at all.

There is no reason to believe that software errors were responsible for the poor per-
formance. A reasonable explanation involves the cylindrical nature of the targets:
since they were viewed off-axis, they presented a roughly elliptical aspect consisting
of the circular top overlapping the circular base. The accumulator thus gathered
conflicting evidence for circles matching the top, the base, and various ap--oxima-
tions to the elliptical composite, all with quantization errors due to the full-p xel spa-
tial resolution. The spatial and orientational search grains were coarse enough that
only one of these shapes could be reported, and very often the "wrong" shape had
the most support.

Two improvements to the program might have prevented this situation: allow sub-
pixel spatial resolution and analyze each accumulator plane independently so that
existence of one circle does not necessarily imply nonexistence of similar circles.
These and other suggestions are elaborated below. For the current implementation,
however, the lesson is that the set of targets reported by the program must be
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screened and edited by a more intelligeL.. system. OHOUGH may assist a photointer-
preter, but cannot yet replace him.
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Section 7

Suggested Improvements

The process of evaluation has turned up numerous ways to improve the current
GHOUGH implementation. Comments about existing features have been made at the
appropriate points throughout this document. The following are additional suggestions
for substantial modifications or needed research. Some of these would require major
research projects or are beyond the scope of the original program. (The large number
of suggestions should not be taken as a criticism of the GHOUGH system. Rather it is a
tribute that the approach is flexible enough to support such extensions and is promis-
ing enough to be worth the effort.)

SLiecar Templates

Evaluation of GHOUGH as a corner detector was done using a right-triangle
template having 20 points along each for the shorter sides and no points
along the hypotenuse. This prevented the diagonal side from having a
significant effect on the analysis, but a better solution should be imple-
mented. The current restriction to closed templates is unnecessary. A sim-
ple modification would permit line segments, corners, riverbanks, and other
fragments to be located. Multiregion templates (e.g., outlines of machine
parts with holes) should also be permitted.

" Composite Templates

The current GHOUGH program searches for only one simple shape at a time.
The principal author [Ballard8la] has suggested ways of searching for com-
posite shapes, such as vehicles with visible wheels. One method uses the
union or difference of R-tables to search for a particular composite. Another
uses subtemplates independently to increment a common accumulator and
then combines the evidence by convolving the accumulator with a special
composite mask. These methods are nearly optimal for finding predictable,
unarticulated shapes in low-quality imagery.

* Subtemplate Accumulators

In higher quality imagery it may be better to search for the subtemplates
independently using different accumulators and then invoke higher-level
logic to combine the evidence. This permits sophisticated scene analysis,
but the large number of generalized Hough analyses would consume both
memory and computer time. Specialized Hough line, circle, and corner
detectors should therefore be used.
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Sugested Improvements

Improved Template Entry

The current method of entering templates using a keyboard-controlled cur-
sor is clumsy. The program should be interfaced to a digitizing tablet or
other tracing device. Tracing should be integrated with zoom capability to
increase accuracy and reduce quantization errors. There should also be
retrace and interpolation commands to simplify improvement of existing
coarse templates. Entry of boundary points with subpixel accuracy and reli-
able edge angles should be supported.

" Automated Template Extraction

Search performance could be improved by extracting template edge ele-
ment directions from the image during initial tracing. The user would indi-
cate an approximate boundary point, and the system would identify the
nearest good boundary point and the gradient direction at that point. The
increased accuracy of the edge positions and the edge directions at those
points would reduce the number of boundary points needed to obtain a given
search accuracy. This, in turn, would reduce execution time. A related
capability, particularly usefal for tracking applications, would allow a new
template to be extracted automatically after GHOUGH had registered an
existing template with the image.

* Gradient Map Input

The current implementation of edge detection is too slow. The program
selects a pixel position, reads in the neighborhood data, computes the edge
gradient, and, possibly, increments the accumulator. It then moves to the
next pixel and begins again with an overlapping neighborhood. This is
inefficient, particularly with neighborhood windows larger than 3x3. For
most applications it would be more efficient to use a separate moving-window
gradient operator to provide gradient or edge map input to the GHOUGH pro-
gram. The same map could then be used to locate many different objects
using separate runs of GHOUGH or other programs.

* Adaptive Edge Threshold

The user must set a threshold value for choosing which gradients are strong
enough to be useful. Too low a threshold will introduce noise and slow the
computation; too high a threshold will miss low-contrast edges. Future ver-
sions of the program should use adaptive thresholds instead of this constant
global threshold.

* Ad_'nt'ive Edge Resolfhon

The current edge detector might also be improved. The 3x3 Sobel edge
detector is excellent for finding small objects with sharp edges, but is nonop-
timal for large objects and gradual edges. Use of different detector sizes
requires separate GHOUGH programs to be run, and there is no way to com-
bine evidence from multiple runs. The best solution would be a hierarchy of
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Suggested Improvements

edge detectors of different sizes all applied to each point in the image. The
edges found at different resolutions could each be allowed to vote for shapes,
or the single edge with the strongest support could be allowed to vote. It
might also be possible to incorporate line detectors, corner detectors, and
edge curvature measures for even better performance.

* Confidence Weighting

Each detected edge element votes once for each shape that could contain it,
and each edge element has equal importance regardless of the strength of
the edge. It may be desirable, as a uner-selected option, to assign more
weight to the edge elements that are more certain [O'Gorman73, van
Veen81].

* Negative Voting

The problem of finding local maxima in the accumulator is necessitated by
the use of positive weights for all votes. ' the voting pattern were zero-
mean, incorrect (or noise) cells would teL toward zero counts while true
peaks would continue to accumulate positive votes. This technique, called
CHOUGH or Complementary Hough, has recently been investigated by Brown.
at the Univ. of Rochester [Brown82a, Brown82bj. He recommends that each
positive vote be accompanied by negative votes of 1/2 on each side across
the direction of the voting outline. This represents the fact that positive evi-
dence for one shape is also negative evidence for other similar shapes.
Brown has also developed an analogy betv-een GHOUGH voting patterns and
standard analytic techniques in optics. (CHi-UGH voting patterns are similar
to the diffraction patterns of coherent optics, and also to the lateral inhibi-
tion patterns present in neurological vision systems.)

S Eparse Edge Detector Appl -. ztion

Coarse search is currently implemented by combining cells in the accumula-
tor. This greatly reduces computer memory requirements but only slightly
reduces execution time. An additional saving could be achieved by applying
the edge operator at every nth row and column to match the spatial grain of
the accumulator. This savimg would be small if the edge operator were still
applied at full resolution.

* Multiple Resolution Anuysis

An even simpler approach to coarse search would use a "pyramid" of images
at different resolutions. This would eliminate the need for a search grain
increment in applying edge operators and indexing the accumulator. The
program would start with a highly reduced image Tor with an edge map of
such an overview image) and would attempt to find any objects visible at that
resolution. It would then use a local search in a higher resolution image to
confirm and precisely locate the objects. (A disadvantage of any coarse
search method is that, once an object is missed, it may never be found at
higher resolutions.)

33



Suggested Improvements

Arbitrary Windows

The current restriction to rectangular search areas is due to tbe implemen-
tation of the accumulator as an array registered with the image window.
There are other implementations, perhaps more expensive, which would
allow edge-search windows of arbitrary shape. At the least it should be possi-
ble to specify multiple rectangular windows instead of having to run the
GHOUGH search separately for each area or jointly with a much larger accu-
mulator.

* Independent Search Areas

In the original GHOUGH implementation, the user was asked to specify a
shape-center search area within the edge-search window. This helped main-
tain resolution when estimating the position of a large object in a slightly
larger edge-search window. If this option is reinstated, the center search
window should not be restricted to be within the edge search window, or even
within the image.

Arbitrary Resolution

The spatial resolution is currently limited to whole pixels, and the angular
resolution is limited to whole degrees. The radius scale factor, on the other
hand, may be specified to any desired resolution. There is no inherent rea-
son why all four parameters should not be kept in floating-point, thus per-
mitting very fine shape matching when the approximate match position is
already known. Edge detectors with subpixel accuracy (e.g., LMacVicar-
Whelan8l]) could also be used for fine searches.

Storage Reduction

Greater spatial and orientational accuracy are possible if the accumulator
uses fewer bits per cell. The accumulator now consists of 32-bit integers, but
should be reduced to 16-bit integers. The highest count encountered in
numerous runs was 678, obtained with a square template applied to an urban
scene vdth a search grain of 16 in each direction. At unit search grain, the
highest counts rarely exceed 40, or even 20. A hardware implementation
might, manage with five bits per accumulator cell, or perhaps with even fewer
by usingy logarithmic counts with stochastic updating [Morris78].

* Logarithmic Radius Spacing

The specification of radius range by a minimum, -naximum, and increment
makesro it ve

r 
diffiult t , mainin rnjlcrhr whlv, a thio ~inf,,. n iiaonfil .I,-An

The spacing between sequential radius values should be logarithmic instead
of incremental. With certain accumulator analysis schemes, the search
grain could also be made proportional to radius.
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* Adaptive Accumulator

Another method for increasing the resolution is to us ai adaptive accumula-
tor [O'Rourke8la, Sloangl]. Such an accumulator is continually restruc-
tured as the votes are entered so that high resolution is maintained in those
areas that are receiving many votes. This would permit precise matching in
a single pass instead of using a coarse search followed by a fine search. The
cost in algorithm complexity might be quite high, however.

* Hash-Table Accumulator

An attractive alternative to a full adaptive accumulator is one based on a
hash algorithm. Only those cells that have significant counts are maintained;
others are flushed periodically or as accumulator space is needed. Although
the best accumulator size and flushing strategies are not yet known, Brown
reports encouraging results [Brown82c].

* Accurate R-Table Indexing

The current algorithm for using the R-table always rounds angles up to the
next larger table entry. This is acceptable for many purposes, but disas-
trous with an angular template such as a square or right angle. The algo-
rithm should be modified to round to the nearest table entry. This improve-
ment could be combined with a change in the R-table format; a hash table or
ragged array representation could be referencea faster than the current
linked-list format.

Effcient Accumulatcr Indexing

The accumulator is currently accessed by column, row, rotation, and radius.
with the radius subscript varying most quickly. A more efficient subscripting
order might be found, although this one seems reasonable. A sizable
improvement in paging performance might be possible using Quam's Method
of four-dimensional block storage [Quam8Q]. This would reduce the r Imber
of accumulator entry page faults caused by cycling the rotation and e'adius
associated with each image edge element. The efficiency gained would
depend on the number of storage words in each virtual memory page.

Elirmination of Accumulator Padding

The accumulator search should be modified so that points outside the search
volume are never examined. This will increase th accumulator search time
and search complexity, but the effect will be small. In return the accumula-
t-or volum - n -A" + umb^ of accumrulator w IL be grreatly
reduced, sometimes by a factor of nine. This will also reduce system paging
time, which can be a major component of the total run time.
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* Accumulator Save/Restore

GHOUGH allows individual planes of the accumulator to be written out as
images. This capability should be augmented so that the entire accumulator
could be written out and later restored. Researchers could then test various
accumulator analysis algorithms without having to repeat the edge detection
and accumulator building steps. There should be a similar capability for sav-
ing and restoring the list of matches. These modifications suggest a slightly
different user interface than currently exists; one where the setting or
modification of search parameters is a separate step from the activation of
routines using those parameters.

* Adaptive Match Screening

Too many potential matches (e.g., over 6000) are often reported, partly
because of lack of smoothing (see below). The program should discard poor
matches when much better ones are found. There seems to be no reason for
reporting more than a few hundred, or even a few dozen, potential matches.
The required screening could be made automatic, or could be controlled by
user-settable parameters.

Accumulator S moothing

Votes for a single instance of a large shape tend to be reported as multiple
maxima (when using the 3x3 edge detector). Both the spreading of the true
peak in the accumulator and the reporting of false maxima due to noise can
be combatted by blurring the four-dimensional accumulator values before
attempting to find local maxima. The program authors recognize the need
for such blurring [SloanSo, Ballard8la], but do not suggest any particular
convolution function. A simple center-weighted 3x3x3x3 mask may be
sufficient.

* Relaxation Enzncerment

The smoothing suggested above may exacerbate the problem of one shape
instance suppressing the detection of other similar instances (e.g., overlap-
ping circles in images of storage tanks). Either simpler or more complex
relaxation and reinforcement processes might be more effective for particu-
lar applications.

auster Analysis

Another possibil:ty would be to search for maxima independently in each
accumulator plane and then combine the resulting lists. Tnis might offer
great savings in accumulator analysis time if the planes used were aligned
with the data storage order. The current "score" routine recognizes
matches as being equivalent if they are within tolerance of a known target. A
more sophisticated algorithm could determine clusters of reported matches
without knowing ground truth.
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" Match Quality Measures

At present the only information reported about a match is the number of
votes it received. The reporting algorithm could also determine peak sharp-
ness, four-dimensional volume, parameters of the best fitting paraboloid,
peak-to-sidelobe ratio, or other descriptive statistics. These could be used
by a higher-level program to screen or combine the reported matches and to
estimate the true position in the accumulator-to-subcell accuracy. The qual-
ity of a match might also be estimated from the cell count since each cell
has a theoretical maximum count that is dependent on the noise level and
the completeness of the corresponding shape instance.

* Match Verification

Future versions of the GHOUGH program may also project matches back into
the image to check for continuity [Kitchen8l] or to use a warp-tolerant
match verification such as chamfer matching [Barrow'?7] or elastic matching
[Burr~ll. Higher-level knowledge such as the plausibility of occluding
objects IChien74] or of particular target configurations [Fischler73, Brown79,
Price~l] might be used for validation.

" Mulfframe Validation

Another possibility is multiframe validation [ler79, McIngvale8O]. A reliable
match will be consistently reported, whereas an unreliable match will be
reported at different locations in different frames. The frame-to-frame
statistics of a match may thus be used to determine match quality. The
number of frames that can be used depends on the rate at which frames are
matched, the speed with which registration positions normally change, and
the available time for target lock-on.

Puzzy Display

GHOUGH displays each detected match as a sharp shape instance
corresponding to the accumulator cell indices of the local maxima. The spa-
tial and orientational quantization of the accumulator makes this a mislead-
ing representation. The shape could be displayed as a somewhat fuzzy over-
lay indicating the ambiguity in true target location. A better solution, of
course, would be to locate the target more precisely either by interpolation
in the accumulator or by match verification in the image.

* improved Score Fzwtion

The command that compares deLecLed matches to expected target. locatao=
should similarly be modified to take search resolution into account.* It
makes no sense to reject a match with a four-pixel error if the search grain
is eight pixels.
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Improved User In erf ace

The GHOUGH program allows the user to examine the list of detected targets
using several screening criteria. Two extensions are needed: (1) storage and
later recovery of the list for delayed analysis and (2) additional screening
routines based on radius, orientation, match quality, or arbitrary combina-
tions of factors. A separate command language or editing system should be
developed for working with these lists. A LISP language might make a good
basis.

" Artificial Intellgence

Feature-matching systems have always been limited by the quality of the
feature-extraction process. Future systems may integrate feature extrac-
tion with feature matching so that high-level considerations can direct the,
application of low-level image operators (Perkins73]. The high-level analysis
may even direct the gathering of additional imagery. This falls within the
planning and expert system areas of artificial intelligence [Garvey74, Gar-
vey76, Brown79].
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Section 8

Conclusions

The GHOUGH program is an efficient and flexible template-matching system. Its
greatest potential is in cueing, counting, and mensuration applications. Its weaknesses
are mainly correctable, although the inherent quantization of the Hough accumulator
space does limit accuracy on any single pass through an image.

The current implementation requires a large number of user-supplied parameters in
order to limit the search space. This is inconvenient for simple interactive use, but
necessary given current computer resources. The ability to focus on specific recogni-
tion problems will be of more use if generalized HouEh techniques are built into sophis-
ticated or intelligent systems.

We have documented the GHOUGH program, evaluated its performance, and suggested
ways to improve the algorithm and its implementation. Analytic models have been pro-
vided where appropriate. While the existing system has definite limitations, it demon-
strates many promising uses for the GHOUGH algorithm.

Implementation of the GHOUGH program on the DARPA IU Testbed required extensive
modification of the user interface and had considerable influence on the Testbed itself.
The merging of the GHOUGH code from the University of Rochester with graphics sub-
routines and the CI command interpreter from Carnegie-Mellon University was a valida-
tion of the Testbed concept.
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Foreword

The primary purpose of the Image Understanding (IU) Testbed is to pro-
vide a means for transferring technology from the DARPA-sponsored IU
research program to DMA a.ad to other organizations in the defense com-
munity.

The approach taken to achieve this purpose has two components:

(1) The establishment of a uniform environment as compatible as
practical with the environments of research centers at universities
participating in the IU research program. Thus, organizations obtain-
ing copies of the Testbed can receive a continuing flow of new results
derived from on-going research.

(2) The acquisition, integration, testing, and evaluation of selected
scene analysis techniques that represent mature examples of generic
areas of research activity. These contributions from participants in
the IU research program will allow organizations with Testbed copies
to begin the immediate exploration of applications of IU technology to
problems in automated cartography and other areas of scene
analysis.

The IU Testbed project was carried out under DARPA contract No.
MDA90-79-C-0599. The views and conclusions contained in this document
are those of the author and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States Govern-
ment.

This report describes the PHOENIX segmentation package contributed by
Carnegie-Mellon University and presents an evaluation of its characteris-
tics and features.

Andrew J. Hanson
Testbed Coordinator
Artificial Intelligence Center
SRI International



Abstract

PHOENIX is a computer program for segmenting images into homogene-
ous closed regions. It uses histogram analysis, thresholding, and
connected-components analysis to produce a partial segmentation, then
resegments each region until various stopping criteria are satisfied. Its
major contributions over other recursive segmenters are a sophisticated
control interface, optional use of more than one histogram-dependent
intensity threshold during tentative segmentation of each region, and
spatial analysis of resulting subregions as a form of "look-ahead" for
choosing between promising spectral features at each step.

PHOENIX was contributed to the DARPA Image Understanding Testbed at
SRI by Carnegie-Mellon University. This report summarizes applications
for which PHOENIX is suited, the history and nature of the algorithm,
details of the Testbed implementation, the manner in which PHOENIX is
invoked and controlled, the type of results that can be expected, and
suggestions for further development. Baseline parameter sets are given
for producing reasonable segmentations of typical imagery.
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Section 1

Introduction

PHOENIX is a program for segmenting an image into homogeneous regions. It com-
bines histogram analysis with spatial analysis to find connected regions having uniform
color or other properties. Small noise patches are merged with their surrounding or
neighboring regions. Regions may then be further segmented by the same algorithm.

Many researchers have contributed to this segmentation techniqae, as documented in
Section 3. The current PHOENIX program was designed by Steven Shafer and Takeo
Kanade at Carnegie-Mellon University (CMU), with much of the programming done by
Duane Williams and Marc Lowe. Drs. Raj Reddy at CMU and Hans-Heilmut Nagel at the
University of Hamburg have guided and supervised much of the development.

The CMU PHOENIX code has been adapted for the DARPA Image Understanding Testbed
at SRI International. Many of the testbed support routines provided by CMU were
adapted for the Testbed by Kenneth Laws at SRI. Particular credit is due to Steven
Shafer for the CI driver and related string manipulation routines, David Smith for the
image access software, and David McKeown, assisted by Steve Clark, Joe Mattis, and
Jerry Denlinger, for the Grinnell display software. All of this software is written in the C
language.

Very few changes were required in the PHOENIX software or in the algorithm itself. The"
information in this document should thus be considered supplementary to the material
cited in the references. User documentation provided by CMU [SmithB0, Clark8l,
McKeown~l, ShaferS2] forms the basis for some sections of this report.

This document includes both a users' guide to the PHOENIX segmer 1)r and an evalua-
tion of the algorithm. The initial portion introduces the segmenter. id describes it in
general terms. Section 2 briefly describes the algorithm and the tasks for which it is
appropriate; Section 3 surveys the historical development of these techniques and
presents the current algorithm in detail.

The next portion of this report constitutes a users' guide. Section 4 describes the
current Testbed implementation and how it differs from the original CMU contribution.
Section 5 instructs the user in the mechanics of using the PHOENIX software.

The remainder of the report body summarizes the evaluation results. Section 6
describes in detail the meaning of the user-specified parameters, documents the per-
formance that may be expected in various circumstances, and presents the results of
evaluation tests. The groups of parameter values developed in this section are a
significant scientific contribution. Section 7 outlines a number of suggestions for
i..ra,...s6,the a... , h, and its i,'pleine-ALion. Section 6 presents conclusions,
including a brief statement of the special strengths and weaknesses of the PHOENIX
approach.

Appendix A suggests alternate approaches to similar data analysis problems, and
Appendix B gives the details of the connected-component extraction algorithm. An
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extensive reference list provides entry points to the image segmentation literature
cited in the text.
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Section 2

Background

This section presents a management view of the PHOENIX program. The segmentation
algorithm is briefly sketched. Typicel applications and potential applications requiring
further development of the algorithm are discussed, and related applications for which
other algorithms are better suited are noted.

2.1. General Description

PHOENIX is a program for segmenting images into homogeneous connected regions.
An input image typically has red, green, and blue image planes, although mono-
chrome images, gradient and texture planes, and other pixel-oriented data may also
be used. Each of the data planes is called a feature or feature plane.

Figure 1. 1 illustrates the image segmentation process. Segmentation begins with the
entire image considered to be a single region. Phoenix "fetches" this region and
attempts to segment it. If it fails, the program halts and waits for further instruc-
tions; if it succeeds, it fetches each of the new regions in turn and attempts to seg-
ment it. A segmerntationz queue keeps track of the regions that are awaiting further
analysis; a terminal queue keeps track of those that have been declared terminal
regions. •

Having fetched a region, PHOENIX computes a vector of intensity counts (a histo-
gram) for each feature plane. Thresholds (or histogram cutpoints) are selected that
are likely to isolate significant homogeneous regions in the image. A set of thres-
holds for one feature is called an iteral set because each threshold defines a histo-
gram interval extending from the previous cutpoint to and including the new one.

The most promising interval sets are passed to a spatial analysis phase that thres-
holds the corresponding feature plane and extracts connected components. Very
small connected patches are considered noise and are merged with surrounding
regions.

The feature and interval sets providing the best segmentation (i.e., the one with the
least noise area) are chosen. Each of the resulting segments is added to the
knowledge base and segmentation map and is queued for further segmentation using
the same algorithm.

This process halts when the recursive segmentation reaches a preset depth, when all
regions have been segmented as finely as various user-specified parameters permit,
or --when the user ternanats executiOn. Lh SCgmentation is s-aed, and may be
reloaded and edited or continued later. The resulting region map and region descrip-
tion file may be used by other programs,
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FIGURE 1.1 BASIC CONTROL SEQUENCE
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2.2. Typical Applications

The PHOENIX program may be used in any application requiring that an image be
partitioned into homogeneous regions. This segmentation may be useful in itself, or
may be a precursor to a semantic partitioning that assigns meaningful labels to com-
posite regions.

The initial segmentation by itself is most useful for image coding applications. Since
there are far fewer regions than pixels, it may be efficient to store or transmit an
image as a list of regions. This would be particularly effective in time-sequenced
imagery, since only those regions that change need to be coded for each frame. The
amount of compression possible depends on scene content and on the acceptable
coding error. One scheme [Yan77] uses run coding to transmit the region map, or
cartoon, and then adds a low-amplitude correction signal to fill in the details.

This same separation of the image signal may be useful in image enhancement.
Enh.ancement within each region separately can bring out details that are otherwise
obscured by illumination effects. This is similar to separate processing of low-
frequency and high-frequency signal bands, but preserves edge structure better.

Region boundaries located by PHOENIX may be used to measure image blur or the
transfer function of the imaging system. This information can be used in image res-
toration and in estimating scene depth from the amount of blur.

The PHOENIX region descriptions may be used for microscopic particle counting or
for counting of nonoccluded industrial parts. PHOENIX will not distinguish touching
objects, but area measurement (for uniform particles) or shape analysis (e.g.,
[Arcelli7l, Brenner77, Lemkin79, Jain80, Rutkowski8l]) can make this separation.
Simple size and shape descriptors may also be adequate for some medical cell
classification problems.

Another application is in macrotexture analysis. Macrotextures are those that have
large primitive elements forming some type of pattern. A checkerboard is a regular
macrotexture; orchards, agricultural fields, and housing developments in aerial
images are less regular; and tree leaves or microscopic mineral domains may be very
irregular. The first step in analyzing such a texture is to identify the primitive ele-
ments, either by template matching or by segmentation [Tomita82].

Segmentation maps may also be useful in registration (i.e., alignment) of two images
[Ratkovic79a-c]. The two maps are first matched, giving an approximate global regis-
tration. The low-amplitude correction signals for each pair of regions are then used
for precise local registration. This seems to be a good way to determine image warp
coefficients, and may also be useful in tracking slowly moving objects in cluttered
backgrounds.

An attempt has been made [Price76, Price78a, Price78b] to use region information
for change detection in complex urban and industrial scenes. Many regions remain
constant from one image to another, but others might move or change form. Region
descriptions in either image that could not be matched (in shape, position, and possi-
bly intensity) were specially flagged for user attention. The method was sophisti-
cated enough to match similar regions at differing positions, but could not determine
whether they were two similar objects or a single one that had moved.

Segmentation's most promising application, although one where it has yet to prove
its worth, is in general-purpose image understanding [Fischler79, Faugeras80,
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Rubin80, Ohta60b]. Segmentation and linear delineation are considered to be the
first steps in feature extraction, followed by texture analysis, determination of sur-
face orientation, and object recognition. These research topics will be discussed
below.

2.3. Potential Etensions

The following applications might be feasible if PHOENIX were modified, used in a non-
standard fashion, or integrated into a more sophisticated system.

Crude region knowledge may be the key to obtaining more precise knowledge: this is
known as planning. Preliminary segmentation (often on a reduced image) can be
used to determine which areas should be examined in more detail. Specialized struc-
ture detectors may then be applied within the regions or along the region boun-
daries. If the analysis is done in real time, higher resolution data may be obtained by
rescannin portions of the original scene. In missile guidance, for instance, higher
resolution imagery becomes available as the missile approaches its target.

Many natural scenes are better described by textured regions than by regions of
homogeneous intensity. PHOENIX can be used to find textured regions if texture
feature planes are provided as input. Many texture measures or transforms have
been suggested [Haralick73, Carlton77, Schachter77, MitchelU78, Tanimoto78, Cole-
man79, Schachter79, LawsS0, Lee82], but their use in PHOENIX will probably require
more sophisticated feature selection and processing.

If texture-based segments are available, it becomes feasible to classify each region as
to its texture type or materials category (assuming sufficient resolution). Adjacent
regions that receive the same classification may then be merged to produce a better
segmentation. (Note, however, that it may or may not be desirable to merge two
fields that have the same crop type but different plowing directions, or two cloud
patches that may be at different elevations. The merging algorithm needs knowledge
about both the scene domain and the intended application.)

Segmer'. maps may also be used as input to an object identification or intelligent
cueinj ystem. The system should be capable of recognizing objects composed of
several regions. In some circumstances it may also have to guess at those which are
contained within part of a region and, if possible, use additional processing to
confirm the hypothesis.

?.4. Related Applications

This section describes applications that are similar to PHOENIX segmentation appli-
cations, but differ in some fundamental fashion. While the difficulties with applying
PHOENIX might be overcome, other techniques would often be more appropriate.

Cueing is the initial detection of interesting objects in a scene. While cueing using a
segmentation map may be possible, the effort of compatiri. the mp may be far
greater than that required for threshold detection, interest-point or corner detec-
tion, unusual-pattern detection [Haralick75b, Winkler78], statistical classification,
blob detection [Klein77, Dea79, Tisdale79, Danker~l], prototype matching
[Aggarwa78 ] , or other techniques. Thus PHOENIX should only be used for cueing if
the segmentation is required for other purposes.
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Object recognition is often combined with cueing when only certain objects are of
interest. The problem of locating predictable signatures is best solved with matched
filtering or template matching. A particularly efficient and flexible template match-
ing method is based on the Rochester generalized Hough transform. (For a review
see [Laws63].) More general object detection requires image ur7 .tanding, and seg-
mentation may be a useful preprocessing technique.

Linear delineation is the extraction of image edges, region boun, .es, and elongated
features. Region boundaries can be found using PHOENIX, but thin, elongated, or
nonclosed features tend to be missed. A complete image understanding system will
need both region extraction and linear delineation operators [Nevatia77a].
Representative techniques are described in Appendix A.

PHOENIX segments images using a recursive thresholding algorithm. The regions
identified at each step are relatively uniform in one feature, and terminal regions
tend to be uniform in all features. In some domains this method will fail. In extract-
ing an illuminated sphere or cylinder, for instance, the important property is con-
tinuity rather than uniformity. Edge-based linear delineation systems are much
better at segmenting smoothly-varying imagery.

Image understanding and object recognition require that many sources of knowledge
be applied [Barrow75]. In particular, the system may require knowledge of sensor
characteristics [Garvey76a], 3-D or physical domain knowledge [Fischler79,
Fischler82], illumination and reflectance models [Horn77], semantic knowledge of
likely adjacencies [Yakimovsky73a, Yakimovsky73b, Feldman74, Barrow76,
Tenenbaum76a, Tenenbaum76b, Tenenbaum0], or models of likely target
configurations [Price8l]. It is not yet known whether segmentation should be a pre-
cursor to such analysis or should be tightly integrated with it.

7



Section 3

Description

This section presents the history of recursive image segmentation and a detailed state-
ment of the PHOENIX algcrithm. The historical information is intended to clarify the
major issues in recursive segmentation and to provide entry points into the literature.

3.1. I-torical Development

Histogram thresholding was an early segmentation technique [Prewitt66]. One or
more histogram cutpoints were chosen near valleys in the intensity histogram.
Connected-components analysis was then used to extract regions entirely darker or
brighter than the corresponding intensity threshold level. There were difficulties,
however; if an image contained many regions with overlapping histogram peaks,
there would then be no obvious or useful thresholds. One solution, used by Chow and
Kaneko [Chow70], was to partition an image into smaller subimages ,:ntil distinct
peaks appeared or the windows became so small that the histograms degenerated.

The earliest use of recursive region-splitting by histogram thresholding was for
analysis of black-and-white cell images [Prewitt70]. Connected components were
extracted from the thresholded image and were used for further segmentation. For
other early approaches to segmentation see Appendix A.

Tsuji and Tomita [Tsuji73, Tomita73] at Osaka University used recursive region-
splitting to segment macrotexture images. The shape statistics of the primitive ele-
ments were compiled into histograms. The smoothed histogram with the most dis-
tinct valleys was used for classifying the elements into two or more sets. Connected
components were extracted (with some overlap allowed), and very small regions were
merged with their neighbors, if possible. Boundaries of the regions were computed
and compared with scene models, and those regions not corresponding to known
object types were scheduled for further partitioning.

Robertson et al. [Robertson73] at Purdue University pursued the notion of histogram
thresholding for segmentation of multispectral scenes. They also used recursive seg-
mentation along rectangular boundaries, foreshadowing later development of the
quadtree segmentation representation.

Several researchers investigated segmentation of natural textures where primitive
elements could not be extracted. Kasvand [Kasvand74] used a primitive constant
threshold with texture measures based on local standard deviation, gradient, second
derivative, and other features. Zucker et al, [Zucker75] computed response to a
spot detector at. every point in a scene and tried to segment thne resulting histogram.
Satisfactory results could only be obtained if the spot detector was approximately
matched to the texture coarseness and if nonmaximal suppression was used to
reduce blurring due to the measurement window size. These researchers did not use
recursive segmentation.
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Other researchers were attempting to segment color imagery using multidimensional
histogram analysis. Tenenbaum et cd. [Tenenbaum74] at Stanford Research Institute
(now SRI) projected the three-dimensional color space onto the chromaticity plane
and segmented on pixel hue. Even with thresholds based on prominent scene objects
[Tenenbaum75], there were difficulties with overlapping hue distributions in
landscape scenes and with color-coordinated decor in indoor scenes, as well as with
an abundance of small texture regions. Neither texture features nor recursive seg-
mentation were used.

Ohlander [Ohlander75] at Carnegie-Mellon University adapted the Tsuji algorithm for
color images by computing histograms of three color features (RGB) and six color
transformations (YIQ and HSD). A simple texture feature was also computed to iden-
tify microtexture regions. These features were used for recursive segmentation
within arbitrary region boundaries. At each stage the histogram with the most prom-
inent isolated peak was chosen for segmentation. Pixels related to the peak were
then extracted and represented by a bit mask. (All those with higher or lower
feature values were represented by the complement of the mask over the original
region.) High-resolution, and hence large pictures and long processing times, was
needed to accurately isolate textured regions and locate objects in natural imagery.
Interactive thresholding inside textured areas was also necessary to segment a city
skyline scene.

Schachter et al. [Schachter75] at the University of Maryland were also studying
color image segmentation at this time. They chose to store the full three-
dimensional histogram as a binary tree. They report that a leaf node is needed for
every five or ten pixels in the image. (This would increase if texture measures were
included.) Clusters in the tree were found by a single-linkage (or chained nearest-
neighbor) algorithm. Nonrecursive segmentation was then done by assignment of
pixels to the cluster classes. A similar method was later used for texture segmenta-
tion of monochrome imagery [Schachter77].

Kender at CMU analyzed the color transformations used by Tenenbaum and Ohlander;
he concluded that inherent singularities and quantization effects were capable of
introducing false peaks and valleys [Kender76, Kender77]. This effect is particularly
noticeable in the hue feature, but also affects saturation and other normalized
chromaticity coordinatec, he recommended that saturation only be used in regions
of high luminance, with hue used only in high saturation as well. (Note that most
natural imagery has low to moderate saturation.) The YIQ transform used in color
television transmission was found to have fewer problems, although its usefulness in
segmentation was not evaluated. Kender also proposed an improved computational
algorithm for hue.

Mui et al. [Mui76] brought together iterative segmentation and spatial analysis for
the segmentation of blood cell images. An initial threshold segmentation was used to
determine scene parameters and initial histogram cluster centers. Refined clusters
were then found in the "color-density" histogram, and these were mapped back to
the spatial domain. Similar techniques have been used in many medical image-
analysis systems [Aggarwal77, Cahn77J.

A key concept of later seguieutatiu, systems is p -T-,an-g, or heuristic guidance.
Planning was introduced by Kelly [Kelly70] in the recognition of human images. A
reduced image was first used to find the face or body outline, then individual features
were sought in higher-resolution imagery. Ad hoc rules were used to identify the
mouth, eyes, pupils, and other .. ial features. Kelly later applied planning to edge
detection [Kelly7l]. Planning, or .ierarchical image feature extraction, was also the
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foundation of other pyramid or processing-cone systems [Uhr72, Harlow73, Han-
son74, Tanimoto75, Klinger76, Levine76, Dyer8l].

Price at CMU brought together recursive region-splitting and planning [Price76]. His
PLAN program for segmentation and symbolic matching used a refinement of the
Ohiander algorithm on a reduced image, then applied the same thresholds within a
slightly enlarged mask area in the full-resolution image. This two-stage approach
reduced segmentation time by a factor of about ten. The color features used were a
modification of Ohlander and Kender's YIQ and HSD, although LANDSAT spectral band
features were also used. Price introduced several texture measures for mono-
chromatic segmentation and added a spatial smoothing step to remove small holes
from tae binary masks. Less human interaction was required during histogram
analysis, region extraction, and database maintenance than for Ohlander's system.

Aggarwal et al. [Underwood77, Ai79, Sarabi81] at the University of Texas have used a
different approach for the segmentation of color images. They have mapped the
image data into a three-dimensional intensity and chromaticity histogram. The
bivariate marginal histograms may be displayed for interactive cluster identification,
or a binary tree structure similar to that of Schachter et al. may be used for
automated cluster identification. A version of the system used discriminant analysis
to detect diseased citrus trees in infrared color imagery. An advantage of the
chromaticity coordinates is that shadow regions in the image may often be easily
identified.

Ohta et al. have further investigated color transforms for recursive segmentation
[OhtaSOa, OhtaSOb]. They computed color histograms using the Karhunen-Loeve
color transform - an expensive method because the transform is different for each
region. Ohta found that the transform principal axes tended to cluster around

1, = red + bLue + green

12 = red - blue

Is = 2 red - (green + blue)

and recommended that these features be used. (The second and third features may
be negative, so that either an offset is necessary or the segmentation code must be
able to handle negative pixel values.)

Ohta's transform is similar to the YIQ system and to the opponent color process
recommended by several authors [Sloan75, Nagin78]. The transform is linear, and
hence avoids the instabilities that Kender found in saturation, hue, and normalized
chromaticity coordinates. Nagin expressed some theoretical reservations about his
own opponent features, but concluded that they "consistently provided more
discrimination than the original RGB data."

Nagin also explored the use of "conservative" histogram thresholding (i.e., suppress-
ing doubtful classifications) combined with region growing, and showed how the image
segmentation algorithm itself could be used for segmentation of two-dimensional his-
tograms [Nagin77, Nagin78]. Other two-dimensional histogram analysis systems bave
been built by Milgram ei al. [Milgram79, "Miigram80] to segment monochrome images
using pixel edge-strength in addition to intensity.

Meanwhile, work on recursive segmentation has continued at CMU. The current
PHOENIX program is a VAX 11/780 implementation of Shafer and Kanade's KIWI pro-
gram for the PDP 11/40. A related system named MOOSE [ShaferBO] is being studied
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at the University of Hamburg for symbolic motion analysis. The algorithm used in
these systems is described below. The use of multiple histogram intervals, spatial
analysis look-ahead, and the interactive control system are major innovations incor-
porated into PHOENIX.

&Z Algorithm Description

Image segmentation reduces a pixel array to a map or list of significant regions. This
greatly reduces the number of entities to be dealt with while increasing our
knowledge about the image. (The increased knowledge, or information, may be meas-
ured by the ruced number of bits required to code the image Vore importantly,
the extracted segments arm usually related to objects in the imagu scene.)

It is difficult to talk about the complexity of the segmentation task without discussing
particular techniques, although this has been attempted [Gurari82]. For a survey of
statistical image models for classification and segmentation see [Rosenfeld79].

There are many approaches to image segmentation, and each has its domain of appli-
cabili.y. Edge-based methods attempt to derive closed regions from linear discon
tinuities. Region-growing methods extend small homogeneous regions by incorporat-
ing neighboring pixels or regions. Region-splitting (or thresholding) methods subdi-
vide initial regions by identifying more homogeneous subregions. All of these tech-
niques are discussed further in Appendix A. The following describes the PHOENIX
algorithm for image segmentation.

3.2.1. General Approach

The PHOENIX algorithm is a regiou-splitting technique. it has the advantage that a
partial segmentation is meaningful, and raly those regions satisfying higher-level
criteria need to be considered for further segmentation.

A scene - ,-.umed to be composed of numerous connected regions, each of which
is appr, -. y uniform in texture and, if untextured, in all of its other pixel pro-
perties. The Luminar,-ie image of an untextured scene then resembles a mosaic of
flat-topped "mesas." These regicns may be related to portions of objects, to whole
objects, or to clumps of objects. (We will temporarily ignore shadows, occlusions,
and other complications.)

The segmentati.. algorithn must identify image regions that correspond to such
scene regions. ,Lie job is complicated by imaging blur, spatial and intensity quanti-
zation, and other artifacts of the imaging process. The most serious probleis,
however, arise when the scene contains sloped facetz [Haralick8O] or continuous
gradients that violate the assumed mesa model.

PHOENIX find,, uniform regions by recursively splitting nonuniform ones, beginning
with the whole image, into smaller regions. (See Appendix A for a discussio, of
splitting tech-niquies.) The connected components associated with each intensity
shie are then extracted. This process is not necessarily cheap, but there is evi-
dence that it is well-suited to a parallel architecture such as the human visual sys-
tem. Price [Price76] lists counts of machine operations required to perform many
of the recursive segmentation steps. The amount of computation per region is
nearly independent of the number of subregions found, so there is a bonus if the
technique finds many subregions in a single pass.
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One way to locate many regions is to analyze the histograms of many features.
PHOENDC and the Ohlander-type segmenters typically use three independent color
features per pixel, plus one or more texture features. (For monochrome imagery,
only intensity and the texture features are available.) Although joint histogram
analysis is possible, it is of the same order of difficulty as the original image seg-
mentation problem. PHOENIX opts for simplicity by analyzing only the one-
dimensional marginal (or single-feature) histograms, augmented by one-
dimensional histograms of linaear or nonlinear feature combinations.

Each pass of the Ohlander/Price algorithm found segments related to a single peak
in a single marginal histogram. The PHOENIX program is able to use -.ultiple histo-
gram intervals to increase the number of regions found in one pass, although typi-
cal operation uses only one threshold per feature in order to minimize noise and
segmentation errors.

3.2.2. Color Features

Although color transformations are not strictly a part of the PHOENIX program,
they are fundamental to its theoretical basis and to its typical operation.

Colc features are needed when two regions to be distinguished have similar inten-
sity %and texture), but different hue or saturation. Even if the regions are not adja-
cent, their intensity histograms will overlap and prevent discrimination. 'Rue,
saturation, or other color features may be used to break the deadlock.

Color features for image processing research are typically generated by scanning a
color photograph through color filters (e.g., Wratten filters 25, 47B, and 58) to get
red, green, and blue feature planes. Real-time systems often use an electronic
color camera to generate YIQ features, which correspond roughly to perceptual
brightness, cyan vs. orange, and magenta vs. green. ('I' stands for in-phase, 'Q' for
rruadrature.) The two color systems are equivalent, and we shall henceforth
assume that the primary input is in the RGB coordinates.

Each color system constitutes a three-dimensional color space, that can express
most of the colors perceived by humans. (The full detailed spectrum that, e.g.,
astronomers and physicists depend upon has been lost, just as it is in the human
visual system.) A few purples and highly saturated colors are not precisely
representable, the colors recorded with different films or cameras may differ, and
digital quantization limits the fineness of color distinctions, but the three-
component representation is adequate for most purposes.

Typical quantization is eight bits per' color axis, or 16.8 million cells for an entire
three-dimensional histogram. Repeated cluster analysis in such a histogram is not
attractive, although nonhistogram methods of multidimensional pattecn recogni-
tion are available. The PHOENIX package instead uses an adaptation of the one-
dimensional histogram segmentation developed by Tsuji, Tomita, and Ohlander.

Any one-dimensional histogram is equivalent to a projection of the three-
dimensional data onto a line (or curve) throuch the color space, if the scene con-
tains many regions, their histogram peaks are likely to overlap and obscure any
useful details in the composite histogram. The overlap is different for projections
at different angles, and it is often possible to isolate peaks from some of the
regions by using many different projections.
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Several projections, or transformations, were discussed in Section 3. 1; many others
are possible. The authors of PHOENIX have generally stayed with Ohlander's choice
of RGB, YIQ, and HSD (hue, saturation, and intensity) projections, although they
note the instabilities of the HSD system near the D axis [Shafer82]. (The HSD sys-
tem is also known as the HSI or IHS system. The symbol D is used here to avoid
confusion with the YIQ system. It comes from den , a measure of the amount of
silver deposited at a given point in a photographic negative.)

The color transforms are generally computed by the method of Kender [Kender76,
Kender77]. The YIQ coefficients are

Y= 0.509R + 1.000G + 0.194B

I = 1.OOOR - 0.460G - 0.540B + M

Q = 0.403R - 1.OOOG + 0.597B + M

where M is the highest possible intensity value in the original RGB features, typi-
cally 255. These formulas have been linearly scaled to maintain quantization accu-
racy (via the unit coefficient). The addition of M is simply for convenience in digital
representation. (The Q feature can be negated before adding M to better match the
green gun on a color monitor.)

The HSD coordinates were introduced by Tenenbaum et al. [Tenenbaum74] to
mimic human color perception. Briefly they are

H =arccos (R-G)+(R-B)
2V(R-G)(R -G)+(R-B)(G-B)

S m(1 -mi,. 
B)

R + G+ B

D= (R+ G+B)
3

where m is the maximum desired saturation value. Hue is normalized by subtract-
ing it from 21r if B>G, and some care must be taken in rounding the values near 27r
if the number is quantized. Note that these formulas contain singularities due to
division by zero: Kender recommends detecting these ci es and treating them as
special values. See [Kender76, p. 35] for a computational algorithm.

3.2.3. Texture Features

Only the intensity feature (D or perhaps Y) is available for monochrome imagery.
This is occasionally adequate for segmenting simple scenes with large objects (as in
cell counting [Prewitt70J or some types of industrial inspection), but aerial scenes
usually show so many regions that the composite histogram is unimodal. Recursive
segmentation can only proceed by using additional texture features or special con-
trol strategies (see Section 3.2.6).

Structural texture features can be used [Tsuji73, Tornita82], but the PHOENIX pro-
gram is best adapted fu- statistical texture features that can be measured at each
point. There are many such measures. Ohlander used a simple Sobel-edge "busy-
ness" feature to identify textured regions in color imagery. Price used local edge
density, variance, and range to segment aerial and side-looking radar imagery. (He
suggested that local minimum or maximum pixel values could be used to distin-
guish some regions.) Fourier and other spatial transforms are popular [Pavlidis75,
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Tanimoto78]. Local gradient or edge strength could also be used, although the his-
togram analysis must be more sophisticated [Milgram79, MiJgram6O].

Ohlander used texture only to remove busy regions from further consideration by
the color segmentation system. Price also used texture this way, but was able to
segment monochrome images using texture features in place of color features.
PHOENIX carries this integration even further by using a limited form of look-
ahead: at each step only those features producing "clean" spatial segmentations
are kept. Thus texture and color features may be used together. (A more intelli-
gent system would understand the nature of each feature plane, and failure of a
color feature to provide compact regions would activate a texture analysis subsys-
tem. This has not yet been tried.)

3.2.4. Histogram Analysis

It was stated earlier that each region in a scene is modeled as a uniform patch in
the image. Such a model implies that the histograms should contain only sharp
spikes. A more appropriate model, allowing for some texture and imaging effects,
is that each region produces a noisy Gaussian peak in the histogram.

Methods do exist for decomposing a function into Gaussian peaks. This is known as
the mixture density problem [Wolfe70] and is important in information theory,
statistics, chemistry, and other fields. Very little of this theory has been applied to
image processing [Chow7O, Rosenfeld76b, Postairegl]. PHOENIX is able to use its
spatial knowledge to avoid the difficulties of these methods, although at the cost of
making some errors in threshold placement. These errors cause the break-up of
some small regions and shifting of region boundaries on others.

Oblander and Price used a hierarchy of huristic rules for selecting the most prom-
inent peak within a set of histograms [Ohlander7B, Price79, Nevatia82]. The peak
was delimited by two thresholds that defined an intensity interval and its comple-
ment. PHOENIX uses similar heuristics, but concentrates on the valleys (i.e., localminima) in the histogram set. Usually a single valley, resulting in one threshold
and two intervals, is selected for each feature. Spatial analysis is then used to
select the best threshold/feature combination. Using only one threshold per pass
reduces the chance of segmentation errors, although it does increase the number
of passes required.

The PHOENIX histogram analysis uses region growing instead of recursive segmen-
tation. A histogram is first smoothed with an unweighted moving average. It is
then broken into intervals such that each begins just to the right of a valley (i.e., at
the next higher intensity), contains a peak, and ends c-a the next valley. A valley is
considered to be the right shoulder of its left interval and the left shoulder of its
right interval. The leftmost and rightmost intervals always have exterior shoulders
of zero height.

A series of heuristics is then applied to screen out noise peaks. Each test is applied
to all the intervals in the histogram (providing there are enough intervals for the
Uest % wtbe aneaingf two for sone tests, three for others). du inerval is
eliminated, it is merged with the neighbor sharing the higher of its two shoulders.
The screening test is then applied again to the merged interval; previous tests are
not reapplied.

Peak-to-shoulder ratio is tested first. An interval is only retained if the ratio of
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peak height to the higher of its two shoulders, expressed in percent, is at least as
great as the maxmin threshold. (See Section 5.1 for more about this and other
user-supplied thresholds.)

Peak area is then compared to an absolute threshold, absarea. and to the relarea
percentage of the total histogram (or region) area. Only peaks larger than these
thresholds are retained.

The intervals surviving to this point should be reasonable candidates, and it is rea-
sonably safe to use global histogram descriptors in the test conditions. The
second-highest peak is now found. and peaks less than a percentage, height, of it
are merged. The lowest (intericr) valley is then found, and any interval whose right
shoulder is more than abamin times this is merged with its right neighbor. (The
parameter seems to be misnamed since the criterion is relative rather than abso-
lute.)

A final screenng is made to reduce the interval set to intsmax intervals. This is
done by repeatedly merging regions with low peak-to-shoulder ratios until only
intsmax-1 valleys remain.
A score is also computed for each interval set. This score is the maximum

(apparently MOOSE used the minimum) over all intervals of the function

1000 peak height - higher shoulder
peak height

'his formula assigns the maximum score to an interval set containing a peak with
shoulders of zero height.

3a5s. Spatial Analysis

PHOENIX next chooses features (and corresponding interval sets) for spatial evalua-
tion. The best isetsmax interval sets will be chosen, provided that each has a score
of at least absscore and at least relscore percent of the highest interval set score.

Each selected interval set is then tested for segmentation quality. The histogram
cutpoints are applied to the feature plane as intensity thresholds and connected
components are extracted. (See Appendix B for the extraction algorithm.) Apply-
ing the thresholds introduces segmentation noise of three kinds: border placement
errors, small noise patches that do not correspond to scene objects, and thin necks
connecting patches that should be separated.

Border placement errors occur when the threshold separating two patches is
influenced by histogram contributions from other nonadjacent patches. The effect
can be so severe that small regions are split apart and/or absorbed into neighbor-
ing regions. This can be combated by conservative thresholding [Milgram79] or by
some type of post-analysis using the statistics of only the two regions involved.
(See [Milgram77] and [MilgramS0] for methods of combining edge evidence with
histogram analysis.) PHOENIX currently ignores such errors.

Price's PLAN program used a fast (but still time-consuming) spatial smoothing step
to eliminate noise regions and connecting necks. Unfortunately the method also
rounded corners and straightened thin diagonal objects. A more intelligent method
would need to determine which pixels were noise regions or necks and to alter only
those.
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The PHOENIX spatial analysis is able to deal with noise regions, but not with con-
necting necks. (Large regions joined by a neck will usually be split in a later seg-
mentation pass.) PHOENIX calls a subroutine to determine whether a connected
patch is a noise region or a true region. At present this subroutine performs only
an area test, with patches smaller than noise pixels considered to be noise regions.

After each feature has been evaluated, the one producing the least total noise area
is accepted as the segmentation feature (providing that the noise area is less than
a percentage, retain, of the total region area). The subregions obtained with that
interval set are added to the segmentation record and the next segmentation pass
is scheduled.

3.2.6. Control Strategies

PHOENIX uses a spadal analysis look-ahead to improve the selection of a segmenta-
tion interval set, just as modern chess-playing programs use dynamic evaluation to
validate moves that seem good to a static evaluator. Spatial analysis improves on
selection by the interval set score about 40% of the time [Shaf,.r82], although the
order in which '°atures are selected may have little effect in many of these cases.

Several other high-level control strategies have been proposed to overcome specific
problems. Ohlander and Price, for instance, used ordering of texture and color
feature sets to guarantee that some features would be tried before others.
PHOENIX has no such ordering because the spatial analysis rejects any inappropri-
ate feature that would cause the breakup of a region. The program developers
recognize, however, that such methods might save computation time or be other-
wise useful; they have added such a facility to a later version of PHOENIX than is
documented here [Shafer82].

Two methods of reducing computation time are planing and focusing. Planning
was discussed in Section 3.1. It Lvolves use of thresholds and region masks derived
from reduced images to speed segmentation of full-resolution images. PHOENIX
does not incorporate planning.

Focusing is the use of interest operators, motion detectors, or higher-level
knowledge to crop the image around objects of interest [ShaferBO]. This concen-
trates expensive resources on appropriate tasks, but does run the risk of missing
unexpected objects in the scene. PHOENIX does not include an automatic focusing
mechanism, but the user may control which regions of the image are to be seg-
mented further. The user may also "prune" regions where the subregion structure
turns out to be uninteresting.

Another difficult problem is the initiation of action when the original set of features
is insufficient to identify a usable threshold. This often occurs in monochrome seg-
mentation, because the single luminance feature has insufficient degrees of free-
dom for separating the overlapping peaks of many small regions. Texture features
also tend to be unimodal unless the scene contains large areas of distinctive tex-
ture (such as agricultural fields [Keng77a]).

Color features are typically multimoda'., making it easy to begin segmentation of
even large scenes. Some possible explaitations for this phenomenon are:
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* Co-evolutioa of natural visual systems and of the environment they
operate in may have produced a teleological segmentation of natural
scenes into colored areas corresponding to functional entities. (Note
that color is nearly always absent in caves and in deep ocean environ-
ments.) Man has continued this trend in the construction and decoration
of technological artifacts. While colored objects are "intended" to con-
trast with their backgrounds, natural textures are more often accidental
or intended for concealment. Further, since our understanding of tex-
ture is poorly developed, the texture measures we are using may !.ave lit-
tle discriminating power to begin with.

* Color is a point property, and can be measured very precisely. Texture
is a local neighborhood property, and current methods of computation
inherently blur the scene. If texture is measured over 15x15 windows, a
single pixel from a different texture source contaminates the measured
texture at 224 loc?.tions around it. The measurement windows of any two
adjacent pixels hrAve 93% overlap. This tends to smooth the texture histo-
grams. For methods to combat this (by nonrmaximal suppression and by
choice of window size) see [Zucker75].

* Perceptual color is a three-dimensional space. Projecting it to a one-
dimensional space (e.g., luminance) often destroys cluster separability;
multiple projections must be used to retain sufficient degrees of free-
dom. Texture space may well have dozens of dimensions, and we have
been ri.asuring it along too few axes for good separability.

* Color features are measured through "leaky" filters that permit some
response to other colors. Consider a picture of a red flower against a
green background. If the color filters were ideal, the red histc-ram
would have a single peak representing the flower and the green histo-
gram would have a single peak due to the background. Only by blending
the two histograms, as occurs now with our broad filters, could histogram
analysis find a starting point. Many of our texture measures are
designed to be orthogonal, and it may similarly be necessary to use
linear and nonlinear combinations of texture features to augment their
effectiveness. (Combinations of texture and color may also be possible
[RosenfeldBQ].)

* Grahame Smith of SRI has suggested that multiple filtering may also play
a role. Imagery for image understanding research has typically passed
through at least two filtering processes during capture on film and subse-
quent digitization. The combined effect may introduce deeper histogram
valleys than were present in the original scene. Texture measures are
not subject to these influences.

* As Kender has pointed out, quantization and aliasing in digital transfor-
mations introduce false peaks and valleys into an otherwise uniform his-
togram. The effect on natural scenes has not been fully studied, but it is
very likely that hue and perhaps saturation exhibit these effects. Various
noise sources, particularly the picket fence effect of digital contrast
improvement, may also introduce sharp peaks and valleys into the color
histograms. Texture measures are often computed using floating-point
arithmetic, and so avoid these effects.

Whatever the reason, luminance and texture features alone are often too unimodal
to initiate segmentation of a large region. A higher-level control strategy is needed
to get the segmenter off dead center. Once it has broken the image into regions,
there is often enough peak separation "o continue to a reasonable segmentation.
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Price solved this problem using partitioning. The image was arbitrarily broken into
s.- .ler sections, and the histogram of each was computed. Each histogram was
treated as the histogram of a feature over the whole image. Thus if a peak was
found in the histogram of one image section, it was used to threshold the entire
image. PHOENIX has no such mechanism, although its spatial analysis step would
make such an actioD less dangerous.

Another, much simpler, heuristic would be to gradually weaken all thresholds until
some histogram became segmentable. In the limit this would require that a feature
threshold be arbitrarily chosen. Although this sounds crude, it may be exactly
what is currently happening in the color domain. If the arbitrary threshold proved
effective, any inappropriate segmentation that it caused could later be undone in
an editing step.
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Section 4

Implementation

This section documents the SRI Testbed implementation of PHOENIX, which is very lit-
tle changed from the original CMI implementatio. It is intended as a guide for system
maintainers and for programmers making modifications to the PHOENIX system. The
terms used in this section may be a little cryptic: they are either deined elsewhere in
this report or come from the supporting operating systems.

The SRI Testbed uses the EUNICE operating system, which is a Berkeley UNIX' emulator
for VAX computers using DEC's VMS operating system. EUNICE was developed at SRI to
permit simultaneous access to UNIX and VMS software and system services, and to
implement improvements to UNIX such as significantly faster image I/0. EUNICE is
now a commercial product maintained by The Woolongong Group in Mountain View, Cali-
fornia.

Some of the directory and file names were truncated for compatibility with an early
EUNICE environment. (This is no longer necessary, although it may still be desirable
for VMS compatibility.) The main program, subroutines, and help files are in directory
/iu/tb/src/phoen! Major subdirectories are:

demo - standard parameter sets;
display - display routines;
do - phase control scheduler;
flags - flag parsing routines;
help - help system text files;
include - macro definition files;
k1 - command operators;
main - PHOENIX main program;
misc - I/O and misc. functions;
new - new region maintenance;
queue - queue maintenance routines;
v - scheduling control functions.

To compile the PHOENIX program, just connect to this directory and type "make". You
may type "make -n" to see what will happen if you do this. Adeitional options are
,locumented in the header of the makeflle.

Other major functions of the PHOENIX package have been moved to the
/iu/tb/lib/visionlib histlib, intervlib, patchlib, and polygnlib directories because these
subroutines may be of use to other programs. There is currently no documentation on
these routines other than that in the soLr_.e code headers,

Source code and help files for the CI drive&- arc in /iu/tb/iib/cb. For extensive docu-
mentation type "man ci" or run "vtroff -man /iu/tb/man/man3/ci.3c". The CI driver

1UJNIX i a 'rademark of Bell Laboratories.
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uses command-line parsing routines in cilib/cmuarglib and in /iu/tb/lib/sublib/asklib;
both of these may someday be replaced by the Testbed argument parsing routines in
sublib/arglib.

Other utility routines contributed by CMU have been distributed to
/iu/tb/lib/dsplb/gmrlib, /iu/tb/Ub/imglib, and /iu/tb/lib/sublib, and are docu-
mented in /iu/tb/man/man3. Some of these have been modified or rewritten for the
Testbed environment; the image access code, for instance, reads Testbed image
headers as well as CMU image headers. Output map files are now created with Testbed
headers.

One modification to PHOENIX was in the manual decision logic of the fetch phase, as
controlled by the 'm' flag. The original code displayed the next region after the user
had made a choice; the Testbed version now displays it before the choice is made.

SRI has also added a detailed display of the threshold selection heuristics during the
interval phase. This is turned on by the 'H' flag, and takes effect if rundisplay is
specified. Each feature histogram in turn is displayed in white. The thresholds before
a heuristic takes effect are shown in blue; those remaining after the screening are
shown in green. The user types a carriage return to proceed with the next heuristic.
This integrates well with the retry facility for redoing the histogram or interval phases.

The original PHOENIX code assumed an upper-left origin for image and graphics
display. CMU provided the conversion macros for changing image display to a lower-
left origin as used on the Testbed. Since Testbed image format is also the inverse of
the CMU format, the macros had the effect of displaying images right side up but in the
lower-left corner of the screen.

Unfortunately the associated graphic displays did not use the coordinate conversion
macros, and could not easily be made to do so. (Maintaining the original layout would
require that all histograms and text be displayed upside down.) We have moved or
interchanged some of the graphic components instead.

The original code limited rundisplay to images of 111 rows or fewer because of the mul-
tiquadrant display layout. With our altered layout, it was possible to extend this to 256
rows, although there is still a minor problem with text overwriting the images.

Modifications were needed in two of the threshold selection heuristics. The maxmin
heuristic was rejecting nearly all thresholds if either of the outermost histogram bins
held a large value; this was fixed by defining the outermost interval minima to be zero
rather than the bin values. The absminn heuristic was rejecting all thresholds at
nonzero bins if the global minimum was zero; this was fixed by clipping the global
minimum to be at least one.

Several heuristic thresholds were permitted to take meaningless values (e.g., relarea >
50 and intsmax = 1). These limits have been tightened. The hsmooth variable was ori-
ginally limited to 20; we have extended it to 100. Several other arbitrary limits have
been extended and default parameter values have been changed to the moderate
values developed in Section 6. Some of the original and new defaults are:

splitrnin: 1 --> 40
hsmooth: 1 --> 9
maxmin: 200 -- > 160
absarea: 20 -- > 10
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relarea: 5 -> 2
height: 70 -- > 20
absscore: 550 -- > 700
relscore: 85 -- > 80

Other minor changes included reducing debugging printodt in clrscreen.c, adding
printout of rejected feature set scores as well as accepted ones, changing the colors of
some display elements, and fixing a bug in display of monochrome images. We have not
yet removed a restriction against using red, green, or blue feature planes without using
all three as segmenter inputs.

Several PHOENIX demonstrations have been set up in subdirectories of
/iu/testbed/demo. The chair directory contains the original demonstration contri-
buted by CMU: segmentation of an orange chair from a white background. The show9
command shows the original red, green, and blue feature planes and the hue, satura-
tion, intensity, y, i, and q feature planes computed with SRI's convert program. The
demo command runs the interactive segmentation using only the red, green, and blue
features. You ma restore demo.cklp file to see the finished segmentation produced by
shell file ckp.csh [using the original CMU parameter defaults].

The portland directory also has a show9 command and a demo script that loads the
final results for segmentation of the 512x512 portland image using strict and then
moderate heuristics. You may run this script and then browse using the "history',
'describe', 'display', and other informational commands. (Use the '*' and 'help *' com-
mands to find out what is available.) You may also restore the nild.ckp file to see the
eff , 'f the mild (permissive) heuristics. This directory also has a skydemo script
designed to show off PHOENIX as a skyline finder: just type "Control-Z' or 'exit' to step
to sucessive results.

The demo command in the skyline directory is very similar. It shows the results of seg-
menting a reduced bishop image using strict, then moderate, and finally mild heuris-
tics.

21



Section 5

Program Documentation

This section constitutes a users' guide to the PHOENIX package as it is implemented on
the SRJ Image Understanding Testbed. As with any reference manual, it has occasion-
ally been necessary to refer to terms before they are defined and discussed in detail. A
preliminary scan through the section may be helpful on the initial reading. Additional
information is available on-line, as described below.

5.1. Interactive Usage

The program requires one or more registered picture files as input. These typically
represent red, green, and blue image planes, and perhaps intensity, hue, saturation,
and other transformations as well. Texture planes may also be provided; they are not
computed by PHOENIX. The program produces a region map, which is a picture file
having 16-bit region numbers as the pixel values.

The set of input pictures is specified by a template and a -f flag followed by a set of
feature keywords. For example:

phoenix /iu/tb/pic/chair/4.img -f red green blue

specifies that the files 4red.img, 4green.img, and 4blue.ing in the directory
/iu/tb/pic/chair are to be used as the input pictures.

Once started, the user typically sets some flag values to control the scheduling pro-
cess and display options, then issues the segment command. This begins segmenta-
tion of the image, which will continue to the halting point specified by the A, B, and C
flags (see below). The user may also interrupt processing with the 'Control-C' key,
and may then examine or alter the current status.

Segmentation is normally done by depth level, with all regions at one depth seg-
mented before any of their subregions are processed. The segmentation of a single
region at a single depth constitutes a pass, and consists of a region-dependent
sequence of various phases.

5.1.1. Invocation !D,-tions

The following options may be specified on the initial command line. All other com-
mands must be typed in interactively or piped in using a batch script. (See Section
5.2.)

-e Echo commands as they are read from a file. If this is not specified,

initialization commands will execute invisibly. Interactive script com-
mands invoked with "<' are not affected by this flag.
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-f feature ...
Feature plane specifications as illustrated above. See [Clarkal] for a
full description of the picture naming system.

-i file
-I file

Read initialization commands from file before accepting commands
from the terminal. Only one such file may be specified. The -I form
exits without accepting terminal input.

-o file
-0 file

This mandatory parameter specifies the output map file. The -o form
will create a new file; if it already exists, PHOENIX will ask whether you
want to overwrite it. The -O form will open an existing map file.

-r region#
-R region#

These two parameters are used with existing (-0) map files to specify
the current (-r) region for further segmentation and the highest (-R)
region number to be updated.

-s Execute a single segmnt command and then exit. This is usually com-
bined with initialization commands (see -i) to set 'flags = ABC' for con-
tinuous segmentation and perhaps. 'flags = q' to squelch tty output.

5.1.2. Interactive Commands

PHOENIX is implemented using the CI command interpreter. Type '?' for a list of
commands that are available from the C1 driver itself. Most of these have to do with
interactive help facilities.

The following PHOENIX commands can be entered from the keyboard at any stop-
ping point during the session. Arguments that are not specified as part of the com-
mand will be requested.

abort
Terminate segmentation of the current region. The region is put back
at the head of the segmentation queue.

checkpoint datafile mapflle
Save the current state of the segmentation. Global variables are
stored in datafile and a copy of the region map is written to mapfie.
Histograms, interval sets, and other temporary data structures are not
saved.

If you specify a nonexistent directory, you are asked whether it should
be created. If either of the specified files already exists, you are asked
whether you want to overwrite the file or specify a new one. Simply
typing a carriage return will abort the command.
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The datafle contains a reference to the mapfile name, so you may not
use operating system commands to rename this file. (You may move
both files to a new directory as long as the same name is used.) The
best way to rename checkpoint files is to restore them and then write
them out again under new names.

clear JsltJ
Remove all regions from a specified queue. You are asked whether you
really want to do this.

describe [type] [identifier]
Describe a data structure. You must specify the type of object and
which one you want. Currently you can ask about regions, histograms,
and interval sets. Regions are identified by number; histograms and
interval sets by feature. You may specify 'all' features if you wish.

display [type] [identifier]
Display an object or data structure. You may display the image, partic-
ular regions, or the current segmentation map overlay. You may also
display the current region histograms or interval sets during phases
when they exist. All of these displays temporarily erase any rundisplay
output.

dqueue JsItJ howmany
Remove houfnmany regions from the head of a queue.

exit Terminate the PHOENIX session. The region map is properly closed
before exiting.

history [region#]
Print the history of a region. Describes the region's ancestors, begin-
ning with the earliest.

list sltj [howmany] [nth]
List the elements of a queue. Lists howmcany elements of the specified
queue, starting with the nth element from the head of the queue if nth
is positive, from the tail if negative. In either case the elements are
listed starting with the one nearest the head of the queue.

prune [region#]
Prune a portion of the segmentation tree. Moves the s, cifled region
back to the head of the segmentation queue, deleting all of its descen-
dents from the region tree and from the output region map. You are
asked whether you really want to do this.

queue Jslt region# [region# ...]
Add regiomP o Add theindcaed egin one at timg, tf
the heari . the specified queue. They will appear on the queue in
rever,u , .i" e., the last one listed will be at the head of the queue.
No ch ', , n,-A,. for duplicate regions or for segmented regions being
added.. i -s. °.entation queue.
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If you accidentally invoke this command (e.g., while trying to quit), just
specify 0 for the region number.

release
Relinquish the display.

restore datafile
Restore a checkpoint file (which must correspond to the current
image, but may have different feature planes). The state existing when
the checkpoint was taken is restored, except that actions following the
last colect phase will be forgotten and the display is not restored. You
cannot restore a checkpoint if you are running PHOENIX in a different
directory from when you created the files.

retry phase
Re-execute a previous segmentation phase. This is only valid when in
the middle of segmenting a region. Data structures created since the
previous start of the indicated phase are deleted. Table 4.1 shows the
transitions that are permitted; current states appear on the left and
desired states along the top.

segment
Run the next segmentation phase. The next scheduled phase of seg-
mentation will be executed.

transfer jsjtj howmany
Transfer regions from one queue to the other. Moves hnunmy ele-
ments from the head of the indicated queue to the head of the other
queue, one at a time. Hence the elements will end up in reversed
order. No check is made for duplicate regions.

Table 4. 1. Legal Retry Transitions

ftch hist intv good next thrs ptch eval slct clct

fetch -. . .. .
histogram - Y - - - - - -
interval - Y Y -.. .
goodfeatures - Y Y Y - - -
nextfeature - Y Y Y - - -

threshold - Y Y Y - Y - - -
patch - Y Y Y - Y Y - -

selection - Y Y Y . . . . Y
collect . . .. . . . .
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5.1.3. Execution Phases

Interaction with PHOENIX is normally through the control of the ,ecution phases.
These axe "packets" of executable code that together constitute the segment com-
mand. The normal sequence of segmentation phases is illustrated in Figure 5.1.
The user may interrupt the segmentation at any time, either at scheduled inter-
rupts (see flags A, B, and C) or by using the 'C7ntrol-C' or 'delete' keys. Execution
resumes when another segment command is issued.

The phases, in order of normal execution, are listed below. (The descriptions
assume that rundisplay has been set to yes; otherwise displays must be requested
using the display command.) To begin or continue this phase sequence, issue the
segment command. The phases that are then run depend on the control flags
which have been set.

fetch
The next region is fetched from the segmentation queue. (Initially the
entLre image is one region.) If the "d" flag is set, a description of the
regiorn is printed. The region is expanded by pixel replication and is
displayed above the original image(where the region center is marked
by the cursor). If the region has an area less than splitmin pixels, or if
the m' flag is set and the user declines the region, it is declared termi-
nal and a collect phase is scheduled. Otherwise the region is passed to
the histogram phase. You will not be allowed to resegment a region
that has already been segmented.

histogram
A region histogram for each color or feature is computed. Each histo-
gram is smoothed using an unweighted moving average if the hsmooth
variable is set greater than 1.

interval
Each feature histogram is broken into intervals (as described below)
and is displayed with the thresholds marked in red. An interval-set
quality, measure is computed for each feature and boxes are drawn
around histograms with acceptable scores. If none was acceptable, the
region is declared terminal and a collect phase is scheduled; otherwise
(if the d" flag is set) the interval-set score for each feature is printed.

goodfeatures
This initializes the spatial evaluation loop [phases nextfeature to evalu-
ate; see Figure 5.1]. If there are no candidate features, the region is
declared terminal and a collect phase is scheduled.

nextfeature
The next good feature is chosen. If all have been evaluated, a selection
phase is scheduled.

threshold
The region is thresholded (or level-sliced) using the chosen interval set,
and is displayed with a different intensity for each interval.
Corresponding intensities are indicated on the feature histogram. The
connected components are outlined on the expanded original and
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thresholded region images. (This outlining is separate from the boun-
dary extraction done in the following patch .nd collect phases.)

patch
Connected components for each intensity interval are extracted.
These components are stored as patches, which are run-coded
repa es'ntations together with a few shape descriptors (linear dimen-
sions, area, centroid, number of holes, etc.). Patches in the foreground
(selected intensity) are 4-connected, while the corresponding back-
ground is considered 8-connected.

evaluate
Patches are classified as either valid regions or noise regions. At
present this is determined by comparing the patch area to the noise
threshold, without regard to patch shape. Each noise region is marked
with a dot in both the expanded original image and the thresholded
image. The feature is then evaluated by computing the percentage of
noise area over the whole image. A neztfeature phase is always
scheduled to follow this one.

selection
When all features have been evaluated, the one with the least noise area
is selected for segmenting the region. A feature is disqualified if the
noise area exceeds the retain threshold, or if any one of its intervals
failed to produce a valid patch. If no suitable feature is found, the ori-
ginal region is declared terminal; in either case a collect phase is
scheduled next.

/
collect

If the original region has been declared terminal, it is moved to the
head of the terminal queue. Otherwise the valid patches (merged with
their contained noise patches) are converted to regions. This involves
computing the polygon boundaries of the new regions, updating the his-
tory list, adding the regions to the segmentation queue, inserting them
in the stored region map, and drawing them on the original image
display. (These outlines accumulate so that the overlay on the original
image always represents the current state of the segmentation. If the
user edits the segmentation history or asks for other displays, the out-
lines may not correspond to the full segmentation.)

This order of execution may be altered in several ways. If an error occurs, e.g., a
memory -llocation failure, the same phase will be rescheduled as the next phase.
The user may also interrupt processing and attempt to schedule a previous phase
with the retry command. The system permits some retries and forbids others,
depending on the last completed phase and the next scheduled pl ase. It will object
if either a fetch phase or the phase you specify is already scheduled next, or if you
try to jump forward in the phase sequence. It will also object if you try to jump into
tne middle of a loop, in particular, you may not retry a rezfeaire phase.

The segmentation stops when there are no more regions on the segmentation
queue. The user may then (or at any time before) ask for various displays and
information, edit the segmentation, or save the current region map and region
description file. A saved state may be reloaded later and processing may continue.
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5.1.4. Status Variables

PHOENIX maintains a set of read-only variables or status q!ery commands. To
query the value just type the name of the variable. Although the values may not be
set directly, some of them may be changed by other PHOENIX commands.

features
Features currently being used in segmentation. This is just the list of
names following the -f flag on the initial command line.

images
Picture files being used in the segmentation.

lastphase
Last segmentation phase completed.

nextphase
Next segmentation phase to be run.

phases
A list of all the segmentation phases. The last and next phases are
designated.

regions
The number and range of existing regions.

time
Real time and CPU time spent in each phase and in the entire PHOENIX
run. (Real time for a restored segmentation is not meaningful.)

See also the execution flags and control variables documented below.

5.1.5. Execution Flags

Flags (on/off variables) may be used to control execution of the entire program or
of any phase. Local phase flags take precedence over global flag settings.

To find out what flags are set, type flags. You may turn off all flags by typing
flags - -' To selectively turn flags on and off, use a command like flags = -AB+g,
where the plus sign may be omitted if there is no preceding minus sign. The follow-
ing flags are available:

A (default)
Begin the next non-fetch phase without interrupt. This permits the
current segmentation pass on the current region to run to completion.

B Permit same-depth fetch phases without interrupt. Segmentation of
the current regions will run to completion, but their children will not
be segmented until the next segment command is given. Flag B is only
meaningful if flag A is set.
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C Permit fetch phases that initiate new levels of segmentation. Segmen-
tation of the entire image will run to completion. This is only meaning-
ful if flags A and B are set.

D Enable debug printout. (See also flag G.) This option turns on printout
of storage management messages.

G Print display subroutine entry, exit, and debugging messages.

H If rundisplay is turned on, step through a detailed display of threshold
selection heuristics during the interual phase. [This is an SRI addi-
tion.]

P Pause rather than stop on interrupts caused by having flags A, B, or C
turned off. (To continue after a pause, type a carriage return. To con-
tinue after a stop, type seg[ment].)

d Describe fetched regions and feature quality statistics.

g Order regions on the queues globally by area. This overrides the o"
flag.

m Request a manual decision on whether to further segment a fetched
region. If rundisplay is active, the region vill be displayed. The d" flag
should usually be set so that there is a further basis for the choice.

o (default)
Order regions by area within each depth. If neither this nor the 'g' flag
are set, regions are simply adu:Bd to the tail of the segmentation queue
as they are generated.

q Execute quietly, without normal tty output. This does not affect output
due to the *G" or d" flags, nor echoing of prompts and commands.

v (default)
Autoverbose mode. Run in verbose (as opposed to quiet) mode for
regions with area greater than autoarea. This he.s precedence over the
'q' flag, but only takes effect locally during a col~ect phase and then
permanently during a fetch phase.

To set a local phase flag, use a command of the form during <phase> = -'+AB. This
string will be used to modify the flags variable during the specified phase.

To examine the current modifier value, type during <phase>. There is currently no
command to display all of the local flag settings at once.

Resetting (disabing) a "during <phase>" option is a little difficult. There is no
command to reset all of the phase modifiers at once. To reset them individually
you should specify "during <phase> =
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5.1.8. Control Variables

The user displays and dec, ion logic used by PHOENIX may be fine tuned by setting
various option variables and thresholds. To turn on the rundisplay option, for
instance, type rundisplay = yes. To ask for the current value, just type rundiplay.
Abbreviations are accepted.

The following affect the fetch phase or the PHOENIX session as a whole. Default
values are listed in parentheses.

autoarea (0)
Maximum region area for the autoverbose option (flag v) to select quite
mode.

depth (infinite)
Maximum depth of the segmentation tree. Regions at this depth will
not be split further. (This test is currently made at the end of the col-
lect phase.)

-undisplay (no)
Use a real-time multiquadrant presentation of processing results. This
cannot be used for images larger than 128x128.

The original image is displayed in the lower-left quadrant with all region
boundaries overlayed in red and the cursor centered in the current
region. A window containing the current region is expanded by pixel
replication and displayed in the upper-left quadrant. Histograms and
interval sets are displayed along the right side of the screen. During
spatial analysis, the lower-right quadrant contains the selected histo-
gram and the upper-right quadrant displays the thresholded region
window. .- tches are outlined in green in both of the expanded win-
dows, and noise regions are marked by blue dots.

splitmin (40)
Minimum area for a region to be automatically considered for splitting.
This is an absolute area, not a percentage of the image area.

A fetched region is first histogrammed, and each feature histogram is smoothed.
This is controlled by

hsmooth (9)
Histogram smoothing window. Smoothing is done with an unweighted
moving average; the outermost bin values are assumed replicated
beyond the ends of the histogram.

The heart of the PHOENIX system is the interval phase, since histogram segmenta-
tion is the major step in color image segmentation. The variables that control this
process, along with their default values, are listed below in the order of ..heir appli-
cation.
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rnaxmin (160)
Lowest acceptable peak-to-valley-height ratio expressed as a percen-
tage.

absarea (10)
Minimum area for an interval to be retained.

relarea (2)
Minimum acceptable percentage of total histogram area.

height (20)
Minimum peak height as a percentage of the second-highest peak. This
test is skipped if there are only two intervals.

absmin (10)
Maximum retained valley height as a multiple of the lowest (or "abso-
lute minimum") valley in the histogram. Intervals separated by higher
valleys will be merged. This test is skipped if there are only two inter-
vals.

intsmax (2)
Maximum number of intervals in each final interval set. The intervals
will be reduced to this number by merging (i.e., eliminating histogram
cutpoints), starting with the highest valley.

Each interval set containing more than one interval is then assigned a score:

1000 peak height- higher shoulderpeak hetgt

Interval sets with low scores are not considered for spatial analysis. Thresholds
used in the spatial evaluation, or goodfeatures to evaluate n nases, are:

absscore (700)
Minimum acceptable interval set score. Less promising interval sets
will not be selected for spatial evaluation.

relscore (80)
Minimum acceptable percentage of the highest set score. Features
with lower interval set scores will not be considered.

isetsmax (3)
Maximum number of interval sets (features) that will be evaluated.

noise (10)
Minimum area of noise regions. Only regions larger than this are
retained.

The following affect the selection and collect phases:

32



Program Documentation

retain (20)
Maximum acceptable noise area as a percentage of a region's total
area. Regions with more noise content will not be retained.

tolerance (0. 1)
Tolerance for polygon fitting. This affects only the output description
and has nothing to do with the region-splitting algorithm.

5.2. Batch Execution

The PHOENIX program offers two methods of invoking prestored commands. The first
is the invocation of CI command files, either interactively or with the -i command-line
flag. For example, you might give the command

> <chair.cmd

where the file chair.cmd contains the commands

flags = -BC+APdov
rundisplay = yes

In this case the PHOENIX program will set the flags for a moderately interactive ses-
sion with the special rundisplay turned on.

The second method is to drive the entire PHOENIX session from an operating system
script. A UNIX C-shell script might look like:

# PHOENIX segmentation system.
# Supply the image name as an argument.

rm -f S1.map
phoenix /iu/tb/pic/S1/.img -f red green blue

-o SI.map -i 21.cmd <<I
flags = ABCPdov
depth = 4
rundinplay = no
segment

echo "Finished."

This script is designed to run without user interaction or visible displays. It does
print some information during processing, but does not wait for you to look at it.
(You can temporarily halt the processing if your terminal accepts hold or -S-Q
handshaking commands.)

To save the typed terminal output you should pipe the standard output to a file. The
UNIX method for doing this is to add >session.log to the phoeni- command within the
script or to the UNIX comand line that inokes the script. You may also use the
UNIX script or tee commands to route the typed output to a file and to your terminal.

The actual submission of this shell script is described in the UNIX Programmer's
Manual. You should run it in foreground mode if you want to interact with the pro-
gram. If you run it in background mode, be sure to pipe the output to a log file so
that it won't appear on your terminal. You can monitor the log file during execution
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(using the cat or trail -f commands) to make sure everything is running smoothly,
although the log file will typically run somewhat behind the actual program execu-
tion. You can also halt the process or reconnect it to your terminal if you wish.
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Section 6

Evaluation

This section documents the performance of the PHOENIX program in test runs on a
va.riety of imagery. Rules are given for setting various scene-dependent parameters,
and performance characteristics are evaluated. The section ends with an application
of PHOENIX to the problem of skyline delineation.

6.1. Parameter Settings

PHOENIX is a moderately complex system with numerous execution options and 14
uspr-settable variables that control the segmentation process itself. We will describe
the effects of each option alone and in combination with others.

In addition, we will describe the threshold variable settings for "mild", "moderate",
and "strict" screening of potential feature thresholds. These correspond to permis-
sive, moderate, and cautious segmentations. These three categories reduce the 14
variables to a manageable single parameter.

Also listed are the minimum and maximum legal values for the SRI version of
PHOENTX; the "disabled" value turns off a heuristic completely, and a "drastic" value
makes it so strict that very few histogram cutpoints will get through.

We recommend that PHOENIX command files be used as a mechanism for quickly
loading sets of commands. We have used files named strict.cmd, ,moderato.cmd, and
miLd.cmd in directory /iu/tb/src/phoenix to store the corresponding 14 threshold
settings (with the exception that intsmax is always set to 2). Files named run.cmd,
tst.cmd, and display.cmd store commonly used flag settings and control variables.
Each user should develop such command files for the tasks he commonly performs.
(PHOENIX should also permit a directory search path to be specified so that standard
files could be used or selectively overridden. The underlying CI driver supports this.)

Flags

The flag mechanism controls the amount of interaction between the user and the sys-
tem. Some flags tell the scheduler whether to proceed autonomously or to stop and
ask for commands; others control verbose printout and debugging messages. Several
sets of flags (e.g., "ABC' or 'go') might be better represented by single variables than
by interacting flags, but the flag mechanism is useful for allowing "during <phase>"
control.

These control options are reasonably straightforward; which flags you should set
depends upon what you want to do. They do not affect the segmentation algorithm,
so there is no danger of setting them "incorrectly."
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The 'm,' 'g,' and o" flags come closest to affecting the segmentation process. Thekm' flag allows you to override the splitmnin heuristic and decide manually whether
each region should be split further. This is a valuable "option, although a time-
consuming one. There is also a need for a more general facility that .rould accept
arbitrary selection criteria for transferring regions from one queue to anothe-
(Although specific tests can be added to the current C-based driver, it would be mut.a
easier to implement such screening in a LISP-based driver language.)

The 'g' and o" flags control the order in which newly-created regions are added to
the segmentation queue. If flag g is set, the regions are ordered globally by size. If
o" is set (and 'g' is not) the regions are ordered by size within each segmentation
depth. If neither is set, new regions are simply added sequentially to the tail of the
queue. (There is no provision for resorting the queue when you switch from one to
another of these options. Either this should be implemented or the queues should be
unordered with selection done during the fetch phase.)

Global ordering by size is useful for interactive sessions. The segmenter begins with
the largest region and keeps whittling off small subregions until the large region is
homogeneous. Then it picks the largest subregion and does the same. With this
method there is enough continuity so that you can keep track of what is happening.
It would also be good for cueing applications where it is important to find small
"blips" quickly.

Depth ordering by size is more useful for automatic segmentation. It has the pro-
perty that an interrupted session provides a good partial segmentation into regions
of similar prominence. If run to completion, the segmentation is identical to that
produced with global ordering.

Global ordering by size is equivalent to a depth-first search through the segmentation
tree, whereas the other two options (depth ordering by size and sequential ordering)
are breadth-first searches. There is a need for more flexible best-first ordering,
where the sorting criterion could be based on region shape, color, position, or other
properties.

A final note: we suggest that the command "flags - A" should reset all flags other
than A, instead of adding A to the current flag list. [he "flags = -*+A" syntax could
then be used to reset all the "during <phase>" flags as well as the global flags.

Rundisplay' (no)

Rundisplay can take only two values: 'yes' or 'no.' It controls the special interactive
display that is useful for exploring the system and for debugging. It is so useful, in
fact, that any production version of the system should be extended to include some
type of rundisplay even for images larger than 256x256.

Rundisplay allows the logic flow to be followed step by step. This has been extended
by SRI (via the 'H' flag) to include the action of each heuristic cutpoint screening. It
could be extended even further to include separate display of heuristics that are
currently combined, such as the absarea and reiarea or abscore and reiscore pro-
cedures. On the whole, though, the current facility is excellent.
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Autoarea (0)

Antoarea controls the size of region for which verbose printout is used if the v" flag is
set. Normally this variable will be left at its default value of zero. This has no effect
on the segmentation algorithm.

Depth (infinite)

Disabled: INF [Also disabled by flag 'g.]
Mild: 20
Moderate: 10
Strict: 4
Drastic: 2

Depth is active when depth ordering of the segmentation queue is used. It prevents
segmentations of regions lower than the specified depth in the segmentation tree.
(Larger numbers refer to lower depths.) The depth limit can be used to restrict pro-
cessing time, although this could be better achieved with the splitmin threshold or
with an actual threshold on time spent.

It is difficult to see how this parameter can be used effectively. Recursive segmenta-
tion depth is not a property of a region, but of the region and its context. A strict
depth limit will cause differing segmentations of a region when differing orders of
features are used to extract it from its background. We therefore recommend that
this variable always be disabled or left at the mild setting.

Splitmin (40)

Disabled: 1
Mild: 20
Moderate: 40
Strict: 200
Drastic: INF

Splitmin is the only control, other than using depth or direct manipulation of the
segmentation queue, for which fetched regions are to be segmented further. Any
region smaller than splituin is declared terminal and is moved to the terminal, or
't,' queue. (This is useful for examining all regions. Just set splitmin to a very large
number, turn on rundisplay, optionally set the "d' flag, and begin segmentation. Each
region will be displayed and described before it is rejected.)

The heuristic thresholds given above seem reasonable, but splitmin should really be
determined by the size of target or object facets being sought. It should be at least
twice the absarea and noise thresholds.

A second he.listic might be used to limit regions to a specifted fraction of the image
area, thus permitting consistent segmentation across diflerent imaging resolutions.
in fact, a more general screening facility couild be implemor ent (paticul~iarly i ba
LISP-based driver) for selecting regions by shape, color, position, orientation, or
other characteristic.
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Hsmooth (9)

Disabled: I
Mild: 5
Moderate: 9
Strict: 25
Drastic: 100

Hsmooth is the width of the averaging window used to smooth each feature histo-
gram. (Any spatial smoothing of the feature planes themselves is outside the pro-
vince of PHOENIX. Such smoothing combats the breakup of textured regions.) Histo-
gram smoothing eliminates many false cutpoints that are due to texture, digitization
effects, or color transformations. It also improves the reliability of several other
heuristics, as described below. The amount of smoothing required is often quite
large because PHOENIX has difficulty distinguishing even small notches from broad
valleys between peaks.

Histogram smoothing is done with an unweighted moving average computed by repli-
cating the outermost bin values to plus and minus infinity. This is simple to imple-
ment, but may introduce artificial peaks rhen used on small regions with scattered
histogram values. A center-weighted moving average would have better filter charac-
teristics.

This smoothing turns out to be very important - and different values are required at
different times. Strict = moothing can be used on peaks that are well separated. This
simplifies the task of later heuristics, although cutpoint placement is not critical in
such cases. Strict smoothing would be useful for properly splitting peaks that over-
lap slightly, but would cause the maxmin heuristics to discard the cutpoint alto-
gether; moderate or even mild smoothing must be substituted. Mild smoothing is
also required for finding small iegions within large ones, but is insufficient for seg-
menting the noisy histogram of a small region.

The problem is that PHOENIX does not use explicit models of histogram pez.s. It
considers only very simple statistics of histogram intervals, such as apcex and
shoulder heiguts. It has no notion of valley width. all heuristics treat a single-bin
notch as being identical to a very wide valley. Histogram smoothing is the only
mechanism in PHOENIX for making such a distinction, and it is insufficient for the
task.

Although modeling of histogram peaks and valleys is the best solution, some improve-
ment could still be made in the histogram smoothing mechanism. A smoothed histo-
gram should augment the original, not replace it. Each heuristic should be able to
apply the smoothing that it requires. Then mild smoothing could be used for selec-
tion of the initial cutpoints and strict smoothing could be used for positioning of a
final cutpoint.

Maymnin (160)

Disabied: 1G0
Mild: 130
Moderate: 180
Strict: 300
Drastic: 10000

Maxmin is the minimum acceptable ratio of apex height to higher shoulder. Any
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interval failing tb-s test is merged with the neighbor on the side of the higher
shoulder. The test is then repeated on the combined interval. The overall effect on a
set of cutpoints is to eliminate those that are on the sides or tops of major peaks.

The original version of PHOENIX had difficulty if an apex abutted either end of the his-
togram. The outer shoulder height was taken to be the apex height, and the interval
would fail the maxin test. Further, the merged interval would inherit this shoulder
height and would also fail the test. This process continued until all intervals had been
rejected. We have fixed this in the SRI version by assigning an outer shoulder height
of zero to the outermost intervals; this represents the bin height at plus or minus
infinity.

Maymin is a powerful heuristic. With strict smoothing and all other heuristics dis-
abled, maxmin alone is able to produce reasonable segmentations. It is even more
powerful when combined with the area heuristics. With mild or moderate smoothing,
maxmin passes clusters of cutpoints in the noise regions between major peaks. This
is fine if the clusters can be thinned by the absarea and relarea heuristics, but a poor
selection may be made if they are left for the intsrax heuristic.

The problem here is that PHOENIX has no "quality" score for histogram valleys. It
assumes that cutpoint bin height is an adequate measure, whereas width and depth
relative to the neighboring peaks are also important. PHOENIX can only incorporate
such knowledge by smoothing the histogram, and the amount of smoothing required
depends on how separated the peaks are.

Absarea (10)

Disabled: 1
Mild: 5
Moderate: 10
Strict: 100
Drastic: INF

Absarea is the minimum histogram area that a usable interval may contain. It should
usually be set to the same value as the noise threshold. (Perhaps the two thresholds
should be combined.)

This threshold is tied to the pixel resolution, and so will cause differing effects in
images of differing resolution. The value really depends on the size of objects you are
trying to find, and on the number of pieces that such an object might be broken into
by texture characteristics.

Relarea (2)

Disabled: 0
Mild: 1
Hoderate: 2
Strict: 10
Drastic: 50 [30 is very strict.]

Relarea is the minimum percentage of the histogram area that a usable interval may
contain. This intended to eliminate noise peaks (PHOENIX has no explicit model of
histogram noise statistics) and to conserve processing time by skipping doubtful
intervals.
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This is a questionable heuristic since the effect on a particular interval depends on
the total area in peaks that may be quite distant. Small peaks are best skipped if
larger ones are available in any feature, but there are times when segmentation must
be done on the small peaks or not at all. If CPU time is not a problem, it is best to
pass these small intervals on to other heuristics and to spatial analysis.

Absarea and relarea should both be reduced slightly to allow for PHOENIX's tendency
to clip the tails of major peaks. (This is due to the lack of a statistical or semantic
model !or histogram peaks. A notch in the tail of a major peak is treated the same as
a wide valley, and the area heuristics often merge the clipped tail to the wrong side.)
Small thresholds for the area heuristics -allow multiple cutpoints to survive for
screening by the later heuristics.

Height (20)

Disabled: 0
mild: 10
Moderate: 20
Strict: 50
Drastic: 100

Height is the minimum acceptable apex height as a percentage of the second highest
apex. (The test is skipped if there are fewer than three intervals.) Cutpoints
between the highest histogram peaks are favored over those isolating low or noise
peaks.

This is a questionable heuristic, for much the same reasons as relarea. It is difficult
to choose a reasonable value because peak height is much less important than the
separation between peaks. Further, the effect on a particular interval can depend
upon distant peaks in the same histogram.

The effect can seem mysterious when the second-highest apex is not readily
apparent. With mild smoothing the second-highest apex is often part of the main his-
togram peak separated by a small notch. The height heuristic then tends to elim-
inate all cutpoints that are not similar notches high on major peaks. A strict max-
min threshold can combat this by pushing secondary apexes down the side of the
main peak. Strict smoothing can also be used to eliminate the notches, although the
amount of smoothing needed varies with the histogram characteristics. The simplest
solution is to simply disable this heuristic or use a very low threshold.

Ab&in (10)

Disabled: 1000
Mild: 30
Moderate: 10
Strict: 2
Drastic: 1

Abmnin screens cutpoints rather than interval statistics. It is the lowest acceptable
multiple of the minimum cutpoint bin height. (The test is skipped if there are less
than three intervals.) An interval is rejected if either shoulder is not at least abonin
times the height of the lowest cutpoint bin in the histogramr. Unfortunately the name
of the heuristic does not make this clear.
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The use of a multiplication factor (or ratio) as a threshold entails some difficulties.
Unless strict smoothing is used, the global minimum is often zero. All cutpoints with
nonzero bin heights are then rejected, and frequently only the global minimum itself
will survive. There was no setting of absmin that would disable this behavior. We
have therefore modified the ratio test in the SRI version so that the denominator is
always at least one.

The heuristic is still unstable near zero, but is tolerable and perhaps even useful for
large regions. A mild or moderate threshold tends to pass clusters of cuts in the val-
leys unless they have been thinned by the preceding area heuristics. A strict thres-
hold performs surprisingly well all by itself; with strict smoothing there will be only
one cutpoint in a valley, and with mild smoothing there is often a noise notch deep
enough to eliminate the other cutpoints.

For small regions (under 100 pixels) this heuristic is useless. Cutpoints for these his-
tograms are nearly always at zero height, so this heuristic cannot choose between
them.

Intsmax (2)

Disabled: 100
Mild: 6
Moderate: 3
3trict: 2
Drastic: 2

Intsmax is the maximum number of intervals permitted in the final inter-.al set for a
feature. If more intervals reach this point, the one with the highest maxmin ratio
(apex to higher shoulder) is merged with the neighbor on the higher-shoulder side.
This process continues until the desired number is reached.

The effect depends on the number and nature of cutpoints passed by the previous
heuristics. It tends to favor cutpoints in valleys because small amounts of noise pro-
duce high maxmin ratios. This behavior is reasonable, although for mild smoothing it
favors noise notches over the centers of broad valleys. (Actually PHOENIX has no
notion of the center of a valley. If given a flat valley, it will put the cutpoint on the
leftmost bin. Only noise notches or high smoothing will pull the cutpoint to the
center.) Intsmax may also pass a cluster of cutpoints in one valley in preference to
cutpoints scattered through many valleys. The area heuristics may be used to com-
bat this.

Multiple cutpoints can be investigated either in one segmentation phase of many
intervals or in many phases of two intervals each. The former saves considerable
computation, but gives poor results for reasons described in the noise section. It is
best to set intsmax to two unless there is need to conserve computational resources.
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Absscore (700)

Disabled: 0
Mild: 600
Moderate: 700
Strict: 930
Drastic: 1000

Absacore is the lowest interval set score that will be passed to the threshold phase.
The score is currently just the maximum over the interval set of all the apex minus
higher shoulder to higher shoulder ratios, which is equivalent to the maxmin ratio.

This heuristic partially duplicates the screening performed by the maxmin thres-
hold, and should be coordinated with that value. The conversion formulas for the
component ratios are

intemal score = 1000 - 100000

Mm7 mn = 100000
1000 - interval score'

It would be simpler if the maxmin ratio were used throughout.

Unfortunately this simple score is poorly suited to choosing a good interval set: one
that will generate a segmentation with very few noise regions. Noise regions are a
symptom of the worst threshold for an interval set, whereas this formula uses the
best threshold. The minimum over the interval set would thus be more appropriate,
although an area-weighted average might be better.

An even better score would consider peak and/or valley shapes. The current score is
a very weak model, as can be seen for the case of an interval that contain several
small histogram peaks: the ratioed apex and shoulder heights -nay belong to different
peaks. The current score is also useless on small regions (e.g., 100 pixels) since the
cutpoints usually have zero height and every interval set has a perfect score of 1000.

ReIscore (80)

Disabled: 0
Mild: 65
Moderate: 80
Strict: 95
Drastir- 100 [Single best score ;s verified.j

Relscore is the least percentage of the highest interval set score that will be passed
to the threshold phase. This is intended to eliminate poor features when better ones
are available, but is less effective for this than the iset-max heuristic.

The difficulty arises because a very small peak separated by zeros will have a perfect
score of 1000. (This becomes more likely with small regions or mild heuristics.)
Other features will then be rejected if not within reiscore of 1000, so that reiscore is
acting much like absscore. If the small peak is finally rejected by spatial analysis,
the region is declared terminal ard the other features are never tried. To prevent
this, either use strict area heurista-s or a very mild relscore of approximately one-
tenth abascore.
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Iset-nax (3)

Disabled: 100
Mild: 5
Moderate: 3
Strict: 2
Drastic: 1 [Single beat score is 'erified.]

Isetsmax is the maximum number of interval sets (features) to be passed to the
threshold phase. If more than this have survived screening, the isetsmax with the*
highest scores will be chosen. Rejected features will get a second chance in later
PHOENIX passes only if one of the chosen features succeeds in segmenting the region.

Noise (10)

Disabled: 0 [Always segment on first feature.]
Mild: 5
Moderate: 10
Strict: 50
Drastic: 10000

Noise is the size of the largest area that is to be considered noise. This heuristic is
applied after thresholding and connected-component extraction. Patches larger
than noise pixels will be retained; others will be merged with surrounding regions.
Note the similarity of this behavior with that of rejecting a cutpoint with the absarea
threshold.

This is a very difficult threshold to set because the size of noise regions is dependent
on the task, the object, and the image resolution. It might be worthwhile to add a
relative noise heuristic that would judge the patch, area in relation to the original
region area. This capability is partially available through the relarea heuristic.

Even better would be a noise score or set of regioi rejection heuristics that would
consider boundary shape, contrast with surrounding regions, local noise statistics,
and task-dependent semantic information.

Retain (20)

Disabled: 100
Mild: 40
Moderate: 20
Strict: 4
Drastic: 0

Retain is the maximum percentage of the original region area that may consist of
merged noise regions. If the total noise area exceeds this, the feature will be
rejected. It will also be rejected if any interval produces only noise patches, regard-
less of the noise percentage. After all interval sets havebeen tested, the one with the
le ist noise area is selected for final conversion of patches to new regions. If two
r,;gions are tied, the first is chosen arbitrarily. (This is the only place where the
input order of the features makes a difference.)

This heuristic is not intelligent enough gor the burden placed upon it. It should be
favoring large, compact areas (or other target shapes) as-well as noiseless ones. At
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present it is quite happy with a trivial gegmentation of a tiny region vs. all the rest.
This is fine for cueing applications, but poor for general use.

Use of multiple cutpoints (i.e., maxints greater than 2) introduces additional noise
and increases the likelihood that some interval will fail to produce a good patch.
PHOENIX is unable to recover from this by deleting one cutpoint at a time or by
retaining the good patches and discarding the rest.

One solution is to add relative noise heuristics as well as this absolute one. Noise
could be expressed as a percentage of patch area: any patch containing too much
noise would be rejected. It could also be expressed as a percentage of interval area.
Either of these would integrate well with retention of all patches or intervals that are
useful, without regard to the success of the feature as a wh3le.

Even better would be a set of region-acceptance heuristics that would consider boun-
dary shape, contrast with surrounding regions, local noise statistics, and task-
dependent somantic information. Such heuristics would be easiest to implement in a
LISP-based driver.

6.Z Performance Statistics

To further evaluate PHOENIX it is necessary to choose a task domain. We have
selected skyline delineation. This is the problem of determining the skyline in an
image that includes both ground and sky.

It should be noted that this problem is not always well defined. Images of cloud-
shrouded mountain peaks or of fog rolling in over a mountain range present
difficulties. There is also the case of a distant horizon seen over a nearby crest: the
near skyline may be the one of operational importance.

We have chosen a range of images for testing. Portland shows a city skyline against a
cloudy sky. Mountain is a distant mountain against a nearly clear sky. Bishop con-
tains a near skyline and a distant one that merges with a cloudy sky; it is difficult for
untrained observers to segment. All of these images were reduced to 128x128 to save
execution time and to permit use of the rundisplay option.

An early test with the portland image at full 512x512 resolution was disappointing. It
was done with red, green, and blue input feature planes and with the original default
threshold settings. (In particular, hsmooth was 1 and height was 70. Maxmin was
also set to 100 in order to get the segmentation started.) The resulting segmentation
was erratic, locating many small ietails while missing several obvious regions. In
particular one white building was not distinguished from the blue sky even though
most of its windows were found. Numerous tiny patches of sky were segmented out
for no apparent reason, yet an easily visible U.S. flag was not distinguished from the
sky region.

Subsequent analysis and experimentation led to several improvements: minor
software bugs were fixed, the strict/moderate/mild parameter scale was developed,
and Kender's versions of the HSD and YIQ transforms were implemented.' The D and
Y transforms are essentially redundant, and are also very similar to the red, green,
and blue featurd planes. They do not always segment identically, but the extra

ISubsequent correspondence with Steven Shafer indicates that CLU researchers have favored Ohta's
transforms over the nonlinear HSD scale.
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information is not worth the computational effort. We have used all nine features,
however.

Hue was mapped to the range 0 to 179, with red at 0 (and 180), green at 60, and blue
at 120. Achromatic pixels (i.e., black, gray, and white) were mapped to 255; this ulti-
mately made no difference since pixels with exactly equal red, green, and blue com-
ponents are exceedingly rare. A less exact test for achromaticity might work better
(or at least differently) for images with slight imbalances in the color strengths; the
bishop image, for instance, is found to have red clouds even though they appear
white.

Pixels c'ntaining blue mixed with rad (i.e., purples and violets) are also rare even in
the hazy mountain scenes, so we found no particular problem with peaks in the hue
histogram being split between the bottom and top portions of the scale. Saturation
was more likely to have such instabilities; we found examples of dark or shadowed
image regions that transformed to very high saturation values. The histograms
resembled peaks with their left tails clipped at zero and moved up to the high end of
the scale. Such areas were so small in our test imagery that they never caused any
difficulties.

The I and Q color features computed by Kender's formulas must be divided by two
(and then shifted to a nonnegative range) if they are to be stored in 8-bit image
planes. Compression to eight bits is not really required 6y PHOE.NIX, but it seems a
reasonable dynamic range. Experiments showed, however, that most of this range
was being wasted. We chose to stretch I by a factor of two and Q by a factor of four
prior to quantization, with clipping of extreme values. This greatly increased their
usefulness for natural imagery, although it could fail for scenes containing large
regions of saturated colors.

For skyline delineation, hue was the most important feature. Sky, clouds, and some
vegetation all had hue values near blue or blue-green, whereas land and buildings
were closer to red, orange/brown, and yellow. This might not hold true for other
scenes, but, for our portland and mountain images, the hue feature and the strict
parameter settings were nearly sufficient to extract the sky as a single region. For
the bishop image they extracted the near skyline from the rather homogeneous
background of distant land and cloudy sky.

Even better results were obtained by first segmenting with strict heuristics and then
resegmenting with moderate heuristics. (This involves somewhat more computation
than using the moderate heuristics alone, but did a better job of segmenting tex-
tured regions.) The strict heuristics typically produce three to five regicns for a
128x128 image, and the moderate heuristics extend this to 12 to 30 regions. Further
segmentation with the mild heuristics produces 60 to 100 regions, many of them sha-
dows or contours in fairly smooth scene regions. Some of these contours may be due
to instabilities in the color transforms, but most have visible interpretations.

Skyline determination was straightforward in the portlami and moutazin images
because the sky was extracted as a single region. The bishop image was much more
difficult. Strict and moderate heuristics separate the nearby land, blue sky, several
large cloud , ad a large region that included a distant valley, a rim of ,-,oun-
tains, and a cloudy sky. The true skyline could only be segmented by using the mild
heuristics. It was found as a single boundary, but could easily have been broken
apart if the various thresholds had been slightly different. In any case the challeng-
ing problem of determining which regions were sky and which were land is not
resolved by PHOENIX it just passes the regions on to some ,mknown post-proressor
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(in this case a human visual system).

The bishop image exhibited another characteristic of PHOENX. In segmenting the
blue sky from large cloud mAsses, it misplaces the boundary slightly. This is because
the histogram cutpoints are sensitive to global area effects rather than locd spatial
variations. (Shafer [Shafer80, Shafer82] discussed this as the "majority rule" prob-
lem.) The misclassifted cloud patches are picked up during later segmentations, but
are so small that many are remerged with the sky. PHOENIX currently has no way of
detecting the spatial patterns of small noise patches that indicate a poorly chosen
border or a string of mixed-source pixels.

A final test sequence was run on the full-resolution (500x500) portlbnd image. Strict
and even moderate heuristics were unable to segment the image when only the red,
green, and blue feature planes were used; it was necessary to use the mild heuristics.
The best approach would be to start the segmentation with mild thresholds and then
return to strict or moderate ones for segmenting the subregions. Instead, we
avoided such special interference and ran the segmentation to completion using mild
heuristics. The full run (which, with the "v flag set, generpted 19,000 lines of print-
out) required 33 minutes of CPU time:

PHASE REAL CPU

Fetch 0:00:13 0:00:08
Histogram 0:04:13 0:02:32
Interval 0:18:12 0:07:27
Goodfeatures 0:00:01 0:00:00
Nextfeature 0:00:01 D:00:01
Threshold 0:10:00 0:03:47
Patch 0:03:51 0:03:30
Evaluate 0:00:05 0:00:04
Selection 0:00:06 0:00:05
Collect 0:38:12 0:14:04

Segmentation 1:18:15 0:32:34

The final segmentation into 1182 regions (including nearly every window of every
building) was much better than the original attempt, but still had difficulties distin-
guishing a gl&ass-surfaced building from the sky that it reflected. The U.S. flag was
segmented out as two small regions.

Another attempt was made using color transforms. This time the strict heuristic.i
were able to segment sky from land using the hue feature. Results were very similar
to those for the reduced portland image, although outlines were noisy and somewhat
more "gerrymandered." Splitting on the hue features required less than two
minutes of CPU (with perhaps an equal amount for computing the color transforms)
and produced nine regions, one of which was the U.S. flag. Some vegetation and
building surfaces were included in the sky region, including most of the glass-
surfaced building. It took another minute to determine that the nine regions were
homogeneous.

Further segmentation required switching to the moderate heuristics. Running this
sequence to completion produced 153 regions after an additional 11 minutes. The
sky was cleanly separated from the vegetation and buildings, but had been split into
two major regions along a front in the cloud cover. The noise threshold of 10 was evi-
dently too low for this task and image resolution, but only a few small regions were
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retained. This combined strict/moderate segmentation of the color transforms was
very successful at skyline delineation. (Segmentation using the moderate heuristics
alone is also quite good.)

The regions found by PHOENIX are not smoothed in any way. Often they are narrow,
twisted, or convoluted. This contrasts with human segmentation, which favors
straight lines at the expense of region homogeneity. Despite this, the regions found
with the strict and moderate thresholds are quite reasonable, and even the mild
thresholds give acceptable segmentations. The best course seems to be to overseg-
ment the image and then use some type of post-analysis to classify and merge the
regions.

For the part-,.uiar application of skyline delineation, PHOENIX is handicapped by its
lack of knowledge About the task domain. It spends much of its time segmenting and
resegmenting areas that are nowhere near the skyline. A more focused search would
save computation and pass fewer regions for further analysis. Specific feature planes
for land/sky segmentation might also be used to simplify the segmentation and
classification task.

6.3. Summary

PHOENIX is a general-purpose segmentation system. It is designed to produce a rea-
sonable segmentation on almost any type of imagery. Proper use of the system
requires extensive knowledge of the algorithm and of the effects of various threshold
settings, but the system can be made to produce reasonable segmentations.

A difficult part of the Testbed integration effort was the analysis and documentation
of PHOENIX control options and heuristic thresholds. Eventually this work led to the
strict/moderate/mild threshold settings specified above. The various settings were
determined by analysis, by disabling most heuristics and testing the remainder in
isolation, by watching the heuristics interact during segmentation of a simple chair
image, and by refinement during segmentation of natural imagery. While possibly not
optimal for any particular purpose, these threshold groupings provide a framework
for fine adjustments.

Evaluation of segmentation software is a difficult task. There are few methods for
comparing segmentations other than tabulation of pixel classification errors
[Yasnoff77] or subjective evaluation on simulated or natural imagery [Nagin79,
RanadeBO]. We have subjectively evaluated PHOENIX's performance for a particular
task using a variety of images.

PHOENIX performed adequately for the task of skyline delineation. We did not
develop optimum parameters or procedures for this task, but used very general
techniques developed for much simpler test imagery. The amount of computation
that PHOENIX required to find the skyline varied with the difficulty of the scene, but
it did succeed in all cases. The further problem of determining which regions consti-
tute sky is beyond the domain of this system.
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Suggested Improvements

The process of evaluation has turned up numerous ways to improve the current
PHOENIX implementation. Comments about existing features have been made at the
appropriate points throughout this document. The following are additional suggestions
for substantial modifications or needed research. Some of these would require major
research projects or are beyond the scope of a segmentation program per se. (The
large number of suggestions should not be taken as a criticism of the PHOENIX system.
Rather it is a tribute that the approach is flexible enough to support such extensions
and is promising enough to be worth the effort.)

" FlexiLe Interaction

PHOENIX is both an automated -Lmentation system and an interactive one.
The interactive control system . e'-cellent, but could be improved if more of
the dynamic decisions were on queues or lists instead of compiled
iterations. The user could tE.a-..: i.'.ach and detach feature planes, manually
screen or acd .histogram cutpoYV% select heuristics to be applied; accept or
reject thresholded patches, etc.

* Alternate Color Feathres

Our experience indicates that the hue feature is much mot useful for sky-
line delineation than the original color features. Researchers at CMU have
favored Ohta's transforms over HSD features for general woric LANDSAT
analysts have used various ratios of color bands to emphasize water, vegeta-
tion, mineral deposits, etc. There may still be much to be gained by develop-
ing transforms suited to particular tasks.

" Texture Transformn

Texture features supplied to PHOENIX evidently need to be combined in
much the same way that color features are combined into YIQ and HSD ver-
sions. Combinations of texture and color features might also be useful for
splitting the one-dimensional projections of multidimensional histogram
peaks.

PHOENIX has been developed primarily for color image segmentation,
although it seems able to work in other multispectral and multitextural
domains. Since additional features can only improve performance (at a cost
in processing time), it may be desirable to add other computed scene
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characteristics such as gradient and edge maps; stereo disparity; estimated
illumination at each pixel; estimated surface distance, reflectance, curva-
ture, and orientation [Horn77, Barrow8l, Brady82]; optic floW [Thompson8o];
and estiL ed material type.

* Delayed Thansforms

PHOENIX currently accepts color transform features (YIQ, HSD, etc.) as input
feature planes. This works well in a research environment, but might require
more storage and computation than necessary for a production environ-
ment. These feature planes and histograms can be computed from the
image as needed. Perhaps few regions would require thresholding on
transformed values if RGB segmentation were first used wherever effective.

* Histogram Stretching

Some of the color transform features are likely to have a narrow range on
any given image, making them useless for segmentation. Unfortunately the
feature ranges vary from one image to another. Since PHOENIX is not sensi-
tive to linear transformation of the features, it might be wise to stretch each
feature to its full dynamic range prior to quantization. (This requires an ini-
tial pass through the image to determine the range.) This computation
could even be done on a region by region basis. Note, however, that full non-
linear histogram equalization will prevent PHOENIX from segmenting the
feature at all.

* Adaptive Smoothing

PHOENIX currently applies the same smoothing window to each of the
feature histograms. An adaptive or iterative smoothing algorithm that
suppressed noise without merging peaks would perform better.

* Luminance Screening

Ohlander and Price [Ohlander78] segment first on high and low luminance (Y
or D) values to avoid singularities in the color transforms. PHOENIX counts
on spatial analysis to reject these unstable transform intervals, but might
benefit from similarly extracting bright and dark regions before doing more
general segmentation'. An alternative is to change the color transform code
so that colors in the unstable regions are all mapped to special code values;
PHOENIX might then need to understand these mappings.

* istogqram Modeling

Several comments were made in Section 6 about the deficiencies of
PHOENIX's interval selection algorithm. The most severe problems relate to

lThis capability is now available in the CMU version of PHOENDC
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its lack of a model for histogram peaks or valleys. Although its heuristics
are cheap and often effective, there may be better alternatives. Statistical
modeling has already been mentioned. Spline fitting, Kalman filtering,
filtered gradient zero-crossing detection, and hierarchical waveform parsing
[Ehrich76] are others. Another idea is to use one set of heuristics to assign a
"valley center" score to each histogram bin and another set to select high-
scoring bins that are spaced suitably far apart.

* CirculaT Features

Hue is computed on a circular interval, with red at both ends of the scale.
The histogram analysis routines could be modified to understand this
characteristic so that purple/red peaks would not be eliminated or split.
The PLAN segmenter [Price76, Ohlander78] has this capability.

" Feature Rejection

A feature may fail to segment a region either because it contains broad
peaks that cannot be resolved or because the histogram has degenerated to
a narrow spike. Although the latter is nit too common, some computation
could be saved by eliminating such a feature from all further splitting of the
region and its subregions.

" Reordered Heuristics

Questionable heuristics such as relarea. height, and abemin should be post-
poned as long as possible in order to develop context and perhaps eliminate
the need for the decision. A supervisory system might be added to deter-
mine when these tests are required, and multiple spatial analyses might be
performed as a final check.

* Alternate Heuristics

The absolute heuristics (e.g., atbarea and noise) can only be set in the con-
text of a particular task and image resolution. Relative heuristics are gen-
erally better, although the PHOENIX versions often perform differently for
small regions than for large ones. Also good are those, like intsmax that
rank order the histogram cutpoints and choose the top few.

PHOENIX and the Ohlander/Price segmenters use slightly different heuristics
for segmenting histograms. In particular, Price's version prefers bimodal
features and also considers the heights and slopes of neighboring peaks (to
avoid chopping off the tail of a skewed peak). There is also a special heuris-
tic for extracting a low-saturation interval. Such heuristics could easily be
added to PHOEN", although it is not clear how they would interacted with
the existing heuristics.

Once histogram peaks have been found, Ohiander and Price use successively
weaker acceptance criteria to choose a single histogram peak for threshold-
ing. This differs from the PHOENIX approach, which uses successively
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stronger rejection criteria to screen potential cutpoints. While either set of
heuristics might be transformed to the other system, it is not clear how
acceptance and rejection criteria could be made to work together.

A useful property of PHOENIX's heuristics is monotonicity; once used, later
applications of the same heuristic would have no effect. If other heuristics
were introduced that destroyed this property, it might be necessary to
repeat the heuristics round-robin until the entire set produced no change in
the cutpoints.

Perhaps the best advice is to make the heuristics so intelligent that each
individually seldom makes a mistake, and to make them accessible to the
user so that they can be refined when exceptions are found. This is the
expert systems approach. with part of each heuristic being a test to deter-
mine when the rule is applicable.

Multivariate Histogram Analysis

Clustering and multivariate histogram segmentation are discussed in Appen-
dix A.6. There may be situations in which a single three-dimensional histo-
gram analysis is more powerful and less expensive than PHOENIX's sequential
univariate analyses of (typically) nine histograms. Histogram storage and
analysis are becoming much less of a problem as computer hardware
improves, and a single clear-cut decision in multidimensional space may
often take the place of many doubtful decisions in the one-dimensional
spaces.

Adaptive C uster Analysis

Most clusters in a multidimensional histogram space can be adequately
separated by piecewise-linear decision boundaries. These decision surfaces
can be found by standard cluster analysis techniques without storing mul-
tidimensional histograms. The advantages increase as the number of
features considered increases, since the adaptive cluster methods require
essentially the same analysis time regardless of dimensionality. There are
additional advantages to using parametric (e.g., Gaussian) methods whel ?
appropriate, since they are designed to optimally separate peaks from each
other and from random noise.

Conservative Thresholding

The region boundaries computed with PHOENIX are affected by global cir-
cumstances such as the number and size of other similar regions. An editing
phase may correct the boundaries by moving them back and forth and by
deleting noise regions, but will not be able to recover small regions that have
been abs.orbed by their neighbors. The occurrence of such lost regiouis can
be minimized by conservative thresholding [Nagin77]. Some type of region
growing is then needed to merge pixels between regions. One method of
adjusting region boundaries is given in fBarrett8l].
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Noise 47udysis

PHOENIX currently discards any region that is too small either in absolute
area or as a percentage of its parent region. Even for task-independent seg-
mentation this may be too simple; any meaningful interpretation of some
small patches would sharpen the retain test based on the remaining noise.
There may also be applications for which the small anomalous patches are
important and cannot be discarded.

In the most common situation, poorly segmented or mixed-source pixels are
discovered along a region boundary. PHOENIX remerges these with the
parent region instead of testing to see which region should properly contain
them. (This could be done by disabling the noise heuristics and allowing a
post-processor to make such decisions, but, with the noise heuristic dis-
abled, PHOENIX has no way to choose which feature to use.)

A more difficult case arises for occluded objects or "flocks" of related pixels.
The disconnected parts have similar histograms and are located by the histo-
gram analysis, but spatial antAysis rejects the feature or merges the
patches. This is right for mos t. applications, but wrong for others. A more
sophisticated system would aualyze the small patches for shape, contrast,
regular spacing, similarity to existing regions, multispectral signature, or
other unifying criteria.

" Planning

PHOENIX does not currently include the planning mechanisms developed by
Price [Price76]. These would seem worth inclusion in either a research or a
production system. The software involved is similar to that for conservative
thresholding.

" frftioning

Another neglected feature of Price's system is partitioning of large regions.
Price uses thresholds derived from the subregions to segment the entire
scene - this gets the segmenter started when faced with unimodal histo-
grams. An alternative is to analyze each subimage independently, then
merge the region descriptions in a later editing step. The method performs
badly if the arbitrary divisions are close to true region boundaries. While
this can lead to some blockiness, it reduces computation time at a very
small sacrifice in global information.

" Selective Sampling

The problem of finding small regions within large ones may also be combat-
ted by computing histograms oniy near pixels with high gradient [Meszka ].
Equally valid is the use of cnly low-gradient pixels; this resolves the centers
of large regions but may produce poor boundaries. Such techniques could
be used after recursive segmentation of a region can proceed no further.
They are made easier if a gradient map is one of the input features.
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Relazation Analysis

Often a histogram is obviously bimodal, but the peaks cannot be resolved.
PHOENIX allows the feature to be used for splitting, but may not be sophisti-
cated enough to merge the resulting noise regions into a meaningful segmen-
tation. For such cases, or even for unimodal regions, more expensive
analysis may be appropriate. Use of more features, partitioning, and selec-
tive sampling have already been discussed. If all else fails, one can modify
the original image by nonlinear relaxation to smooth the subregion interiors
and enhance the boundaries [Bhanu82].

* Map Input

One method of adding planning and feedback is to feed crude segmentation
maps to PHOENIX as feature planes. These maps might come from previous
PHOENIX runs or from other segmenters. Using such maps requires
different control structures and heuristics since the bin contents, not the
overall histogram peaks and valleys, are the meaningful features. Phoenix
can make partial use of such a segmentation map only by accepting it as the
current state and then trying to split it further. A more flexible system
might use multiple segmentation maps as guides to a multidimensional clus-
ter analysis.

" Adaptive Thresholds

The Ohlander and Price segmenters use a tightly constrained valley selection
heuristic, then a weaker one. A similar interactive technique has been found.
useful with PHOENIX. This concept could be integrated with the PHOENIX
control structure by automatically segmenting first with severe histogram
smoothing and tight constraints, then with gradually relaxed constraints for
regions that are deemed worthy of further effort. Each new region would go
through this same sequence of tests. The cost of such a technique would be
lessened if the pre-smoothed histogram were retained until a satisfactory
segmentation was achieved.

S57ape Analysis

PHOENIX currently chooses a region for segmentation without regard to the
region's shape or context. Only the region size and segmentation depth are
considered. It is possible that better segmentation could be achieved by
considering shape during the fetch phase and also during spatial analysis.
Extended regions such as rivers and roads may require heuristics different
from those for compact regions.

" Heuristic Training

The space of all heuristic orderings and threshold settings is too large for
intuitive design. If the heuristics are to be extended or improved, some type
of ordered search is required. This will require a set of training images with
known region boundaries. PHOENIX can be modified so that segmentation
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errors are flagged and evaluated at each step. A human operator or higher-
level control system could then drive PHOENIX through the training set.
adjusting the thresholds to achieve good performance. If ground-truth train-
ing images are not available, a much more sophisticated expert system will
be required.

*Additiotal Displays

The rundisplay option is very good, and made it much easier to evaluate the
existing heuristics. The SRI heuristic display (flag H) should be extended to
show separately the action of the absarea and relarea heuristics, and of
abascore and relscore. (It should also be modified to allow early escape from
the full set of displays. The best solution would be to make each heuristic
application a separate phase.)

The rundisplay layout of all feature histograms on a single screen is also
excellent, although it could be improved by printing the interval set score
with each histogram. A similar display should be implemented for the
"display histograms" command, which currently shows the histograms one
by one. For single-feature interval set display, each interval set area should
be printed; a vertical scale on the histogram might also help.

For large images, where rundisplay is currently not available, it would be
useful to be able to display the histograms of any region at any time. At
present this usually involves moving the region to the segmentation queue
and executing a histogram phase. This cannot be done if the region has
already been segmented unless you are willing to prune the region.

Better displays are also needed for showing individual regions in context.
This is currently done by drawing the region outline on the original image
and marking the center with a blinking cursor. Unfortunately the outline is
often difficult to see and the cursor is insufficient to indicate whether the
inside or outside of the outline is meant. A better display would show either
the region or its surround as a solid patch. (A keystroke could be used to
flip between the two options.)

During rundisplay each region that is created is drawn as an outline on the
original image. This overlay is supposed to represent the current state of
the segmentation. It should be erased and redrawn when a region is pruned.
Some of the other rundisplay components should be erased when a retrk
command makes them obsolete.

* Immediate Feedback

The noise area produced in a threshold phase is not reported until after all
promising features have been analyzed. It wrmuid be better to report the
........14.. o t.1,. spati a ii ndividia1w as- joinI-ya the 1,-or -ourie

then match the noise statistic with the corresponding patch display. (The
evaluate phase does little except compute and print these percentages. It
could be eliminated.) Another improvement would be to inform the user
about which heuristic rejected a particular interval set score.
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Verbosity Coordinatiom

The PHOENIX code contains several mechanisms for controlling verbose
printout and debugging messages. Various messages are controlled by com-
piler flags, global variables, PHOENIX flags, and by the SRI printerr package.
It would be better if all were controlled by PHOENIX flags or variables. There
should be an additional flag to print the name of each phase as it is begun;
this would simplify debugging and retry commands.

Queue Mamrgernnt

PHOENIX maintains a segmentation queue and a terminal region queue. It is
somewhat disconcerting when the same region appears on both, or when a
region appears several times on one queue. PHOENIX does check each
fetched region to make sure that it has not been segmented, but a better
approach would be to ensure that the queues remain valid at all times.
Adding a region to a queue should remove all other occurrences, and seg-
mented regions should not be allowed on the segmentation queue. The
queue manipulation routines should also be augmented with various screen-
ing options for transferring regions from one queue to the other.

Split/Merge Capability

One option that the user should have is to combine two neighboring regions.
Eventually heuristics might be added for doing this automatically in
appropriate circumstances. The segmentation history will require a general
graph representation instead of a tree.

* Explanatory Capability

It would also be helpful if enough history information were kept so that the
system could answer questions about the final segmentation and the steps
that led to it. This would include questions about why a particdar region had
been retained and why it had not been split further, what t!'resholds would
be needed to segment it further, what effect those thresholds would have on
other regions, etc. (Admittedly some of the answers might require extensive
computation.) Such question-answering capabilities are common in expert
systems. The answer to a "why did you" question is typically a printout of
the rule that triggered the action.

" Caroutine Implemnation

PHOENIX can be driven by another program, but the interaction is clumsy.
The driver program must invoke PHOENIX and send commands down a UNIX
pipe. Output is obtained by sending a "checkpoint" command and then exa-
miigthe resulting map and data fe.2

01his solution was suggested by Steven Shafer at CM. It avoids the checkpoint parsing overhead of re-
peatedly invoking new PHOENIXprocesses with the single-step option.
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For more flexible interaction. PHOENIX must either be implemented as a
subroutine or as a server process. The subroutine approach gives the con-
trol program a dedicated process for segmenting a particular image; some
communication protocol would be needed for conveying the new segmenta-
tion results. The server, or coroutine, implementation is more like having a
separate piece of hardware for segmenting images: the control program
would send requests, and PHOENIX would send back replies. This permits
isolation of the PHOENIX history fles so that no other program would have to
load and parse them, but it does introduce complications'if PHOENIX ser-
vices are to be shared by several control programs.
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Section 8

Conclusions

The PHOENIX segmentation system is one of several existing systems for recursively
segmenting digital images. Its maior contributions are the optional use of multiple
thresholds, spatial analysis for choosing between good features, and a sophisticated
control interface. Some of the strengths and weaknesses of the PHOENIX algorithm are
listed below.

" PHOENIX like other region-based methods, always yields closed region boun-
daries. This is not true of edge-based feature extraction methods, with the
possible exception of boundary following and zero-crossing detection [see
Appendix A]. Closed boundaries are the essence of segmentation and greatly
simplify certain classification and mensuration tasks.

" PHOENIX is a hierarchical or recursive segmenter, which means that even a
partial segmentation may be useful. This can save a great deal of computa-
tion if efforts are concentrated on those regions where further segmentation
is critical. If PHOENIX is to be driven to its limits, other methods of seg-
menting to small, homogeneous regions may be more economical.

* PHOENIX is relatively insensitive to noise. Thresholds are determined by the
feature histograms, where noise tends to average out. This contrasts with
edge-based methods, where the local image characteristics can be highly
perturbed by noise.

" Different segmentation problems require different amounts of histogram
smoothing [Ranade80]. It generally works best to start PHOENIX with strong
smoothing and strict heuristics and then to gradually weaken both. Some
images, however, require mild smoothing or thresholds to get the segmenta-
tion started. An adaptive system would be desirable.

* PHOENIX has no notion of boundary straightness or smoothness. This may be
good or bad depending on the scena characteristics and the analysis task. It
easily extracts large homogeneous regions that may be adjacent to detailed,
irregular regions (e.g., lakes adjacent to dock areas or sky above a city);
such tasks can be difficult for edge-based segmenters.

" PHOENIX tends to miss small regions within large ones because they contri-
bute so little to the composite histogram. It is thus poorly suited for detect-
ing vthlcies and small buildings in aerial scenes, although there may be ways
to adapt it to this use. It also tends to misplace the boundary between a
large region and a small one, thus obscuring roads, rivers, and other thin.
regions. Boundaries found by edge-based methods are less affected by dis-
tant scene properties.
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' PHOENIX may also fail to detect even long and highly-visible boundaries
between two similar regions if the region textures cause their histograms to
overlap. Edge-based methods are better able to detect local variations at
the boundary.

" PHOENIX requires multispectral or "multitextural" input for effective opera-
tion, and may even require transformations and -ombinations of these
feature planes. Edge-based techniques are better adapted to operation in a
single feature plane.

" Since perfect segmentation is undefined and unobtainable, PHOENIX must
oversegment an image in order to find all region boundaries that may be of
use to any higher-level process. It is left for a segmentation editing step to
merge segments that have no usefulness for some particular purpose.
Without having such a step, or indeed even a purpose, it is very difficult to
evaluate the segmenter output.

Selection of a segmentation algorithm and improvement of a particular software pack-
age are both highly dependent on the task to be performed. The PHOENIX segmenta-
tion system is a flexible starting point for further development. This report and the
SRI Testbed environment help to make PHOENIX available as a benchmark system and
as a research tool.
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Appendix A

Alternate Segmentation Techniques

This appendix explores alternate methods of segmenting images. It is intended to clar-
ify the issues involved in region extraction, and to introduce background and vocabu-
lary needed to read the literature in this field. For other surveys see [Zucker76a],
[RIseman77], and [Fu8i].

A.1. Edge Methods

One approach to segmentation consists of detecting small edge elements and then
linking them into region boundaries. Edge and region methods are nearly equivalent
for simple scenes of cubes and wedges. In natural images, specific structures are
best found with particular techniques [Nevatia77a]. Region methods locate irregular,
homogeneous regions, but may ignore or conceal linear features; edge methods
detect linear features and detailed (or possibly camouflaged) objects, but give frag-
mented region boundaries that may be difficult to interpret. Perhaps the two must
be combined so that detected edges provide context for region growing and region
knowledge can aid edge linking [Milgram77, Milgram78, Barrow8l].

Sometimes edge detection and linking are combined [Pingle7l, Montanari7l, Mar-
telli76]; this is called edge following or boundary tracking, and has advantages when
closed regions are required. A similar method is run tracking [Nahi77, Nahi78], in
which the object boundaries found on one row are used to aid location of boundaries
on the next row. (This is similar to the PHOENIX connected-component extraction
algorithm.)

A separate edge detection step is more popular because it is compatible with either
single-pass or parallel implementation, and because the detected edge elements are
also useful as texture primitives. Edge linking may be done using relaxation labeling
[Riseman77, Zucker77, Prager8O], expansion-contraction to close gaps [Perkins0J,
curve fitting, or clustering and heuristic lnIng [Jarvis75, Nevatia76, Fischler83].

Edges in digital images are difficult to define. A few edge detectors are based on
theoretical models of scene edges [Hueckel7l, Huecke173, Horn77, Mitiche80, Haral-
ick8l, Brady82], but most are heuristic local gradient estimators [Davis75, Pratt78].
Some operators are small in order to approach a true local derivative, others are
quite large to provide noise immunity. Comparative studies [Fram75, Bullock76,
Abdou79] have not proven the superiority of any one operator for all classes of
imagery.

Color edges are even more difficult to deflne. Either a single gradlient map m,ut be
defined on the multivariate feature plane, or edges detected separately in each
feature plane must somehow be combined [Nevatia77b, Robinson77]. For color data
the method should match human perception of color edges, but we would like it to
extend to texture features and other data as well
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Texture edges (i.e., boundaries between regions of differing texture) are also impor-
tant. The standard approach is to identify ordinary intensity edges in some texture
transform of the image, but texture-specific methods have been developed [Thomp-
son77, Deguchi78, Davis80, Davis82].

Some exciting advances have been made in the area of zero-crossing detection
[Grimson80, Brady82]. The image is convolved with the se .ond derivative of a Gaus-
sian blur function (chosen to match hypothesized channels in the human visual sys-
tem). Zero-crossings in the filtered image then form closed region boundaries whose
positions can be estimated with sub-pixel accuracy [MacVicar-Whelan~l]. Further,
the sensitivity of the detector to edges of different widths can be controlled by the
width of the Gaussian function, and the strength of the edge at a given point can be
measured by the rate of change across the zero crossing. More work is needed to
determine how to combine these multiple sources of evidence without losing the
closed-region property.

A.2. Thresholding

Thresholding is a quick way of locating regions. Often an image function may be
found that is maximal for the smooth interiors of regions and minimal for region
boundaries. Other functions, such as the image itself, may be maximal in some
region centers and minimal in others; boundary areas take on intermediate values.
In either case, thresholding may be used to separate region interiors from edges.

Using successively lower thresholds generates a contour map; adding a stopping cri-
terion makes this a segmentation algorithm. In forward-looking infrared (FUIR) tar-
get imagery it has been found that object shapes change very little as the threshold
is varied, but noise regions change dramatically. Milgram [Milgram77] exploits this
consistency by choosing the threshold giving the best match between corresponding
region boundaries and the edge elements detected by another method; this has
difficulties with small or textured regions [RanadeBO].

There are three types of threshold: constant, scene-dependent, and adaptive.
([Weszka78] further classified thresholds as global if they depend only on pixel value,
local if they depend on neighboring pixel values, and dynamic if they depend on spa-
tial position.)

Constant thresholds are those having the same value for all images (e.g.,
[Kasvand74]). Some real-time hardware systems use this technique, but it is rare for
any function of diverse images to have an appropriate constant threshold.

Scene-dependent thresholds are constant for a given image, but may vary as a func-
tion of the sensor, illumination, analysis task, or image content. The threshold is typ-
ically set interactively by an observer or automatically by histogram analysis. Histo-
gram thresholding was developed in the context of cell segmentation and
identification [Prewitt66], and may still be the best technique for this purpose
[Ranade8O].
Relaxat.ion processes have also een us-ed to remap th ' . into a fa- dm-

inant intensities [Rosenfeld78, Peleg78, Ranade8O]; this is essentially a thresholding
process. Like other histogram-based methods, it tends to ignore small regions that
may be semantically meaningful.

Adaptive thresholds are set automatically as a function of local scene content; they
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vary from point to point within an image. Such thresholds can adjust for changes in
illumination within a scene. As usually implemented, the threshold is a function of
the image data along a scan line [Serreyn78] or within a window. The threshold will
work badly if a window contains no object or multiple objects with different intensi-
ties. An isolated small object may be overlooked in a large window, and a large object
may be thresholded inconsistently across small windows.

Histograms computed over regions of mixed sizes are difficult to segment. Weszka et
al. [Weszka74] suggest computing the histogram only over pixels near region boun-
daries (i.e., pixels with high gradient). Further discussions of edge detection and
texture analysis to set thresholds may be found in [Weszka78] and [Kohler8l].

Panda and Rosenfeld [Panda78] found that intensity/edge-strength histograms of
FLIR targets are trimodal, with peaks representing background, edge, and object. It
was found insufficient to set a single threshold at the intensity value of the edge
peak. Better methods used edge gradient to implement decision boundaries extend-
ing from the edge peak to the valley between the background and object peaks.

A.3. Iterative Modification

An alternative to adaptive thresholding is context-sensitive modification of the image
itself. This is typically done by iterative relaxation or "competitive-cooperative"
processes [Troy73, Humnme178, Zucker78, Kirby79, Nagin79, Eldundh80, PelegS0],
although single-pass methods such as cluster analysis and pixel classification could
be adapted to this purpose. (Relaxation output might be useful in training such a
classifier.)

Unfortunately relaxation processes tend either to do very little or to be very sensi-
tive to the updating rule, the image-dependent compatibility coefficients, or the class
membership function for initially labeling each pixel. Various schemes have been
proposed for estimating these quantities. Histogram segmentation, for instance, can
be used to select the initial class membership function [Ranade80.

One use of relaxation is to get the segmenter started on scenes (or composite
regions) with unimodal histograms [Bhanu82]. The relaxation process emphasizes
spatial features that are too weak or space-variant to show up in the histogram. Such
preprocessing can split a composite peak into subpeaks that are useful to a thres-
hold segmenter. This is in contrast to relaxation methods applied to the histogram
(see Section A.2), which can reduce the number of peaks but never create new -,es.

A.4. Recursive Splitting

Uniform regions can be found by recursively splitting nonuniform regions (beginning
with the whole image) into smaller regions. In the limit this produces single-valued
and perhaps single-pixel regions. In some cases it may be desirable to split even uni-
form regions using region shape rit^;- r ,;n.-79 .Ru .oisil

Since almost any area can be better represented (in a mean-square-error sense) by
two small regions than by a single large one, it is difficult to determine when to stop
splitting. Most splitting methods lack a justifiable stopping criterion. One possibility,
derived from coding and information theory, is to use the number of bits required to
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code a region before and after splitting as a measure of improvement; this is unfor-
tunately dependent on the coding method.

Splitting is always costly since region descriptors (shape, variance, etc.) must be
computed for each subregion. Suppose that a region is split into d subregions: all
pixels in at least d-1 subregions must be reexamined to compute the new descrip-
tors. To segment an image down to the pixel level requires

N2 (1+ --- ogl N2)

pixel examinations, as opposed to N2 for segmentation by merging or growing pro-
cedures.

The above analysis assumes a deterministic splitting algorithm. In quadrant subdivi-
sion, for example, regions are repeatedly split into four square subregions until
homogeneous regions are found. (The number of pixels in a row or column is typi-
cally a power of two, making the subdivision trivial.) This method segments too finely
so that a later merging step is required; even so, it is one of the fastest partitioning
methods.

The most difficult step in other partitioning methods is deciding exactly where the
new boundary should go. If the new boundary location is not known a priori, the
region descriptors must be computed for each possible boundary. This can involve a
very large search space and enormous computational costs. Functional approxima-
tion schemes [Pavlidis72] avoid this by using parametric solutions for the boundary
and for the region descriptors. The PHOENIX algorithm offers another solution by
choosing boundaries along significant intensity contours.

A.5. Classification

The purpose of segmentation is often classification. This can be reversed by using
pixel classification to achieve segmentation. The basic problem is to classify an
image window as one of several texture types. For a survey of multispectral
classification in remote sensing see Haralick [Haralick76].

The method of maximum likelihood could be used if we had enough information about
the texture classes. We would estimate the likelihood of the observed pattern under
each hypothesis, then choose the texture class giving the highest likelihood. Unfor-
tunately the required probability distributions are too large to be represented as his-
tograms.

Nonparametric methods have been proposed for estimating and storing large distri-
butions; see, for example, the set covering procedures of Read and Jayaramamurthy
[Read72] and McCormick and Jayaramamurthy [McCormick75]. It seems sensible,
however, to assume a parametric form for the distributions whenever it is possible to
do so. This allows us to develop simple vector product scores for classifying pixels.

Image intensities seem to be well characterized by statistical moments. Ahuja et al.
[Ahuja77' show that the rfrst few moments are as useful as an trtire histogram for
classifying textures. Statistical methods have also been developed for classifying the
spatial distributions of texture pixels [Haralick73, Mitchell78, Rosenfeld79, Laws80J.

A simple nonparametric approach is to store an exemplar (or feature vector) for
each known texture type. Each pixel to be classified is compared to each exemplar
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and is assigned to the class of the most similar one. This has the advantage that it is
easy to add additional texture exemplars.

The principal difficulty with any type of texture classification is that the region to
compute texture statistics over cannot be known unless segmentation has already
been accomplished. Typical image processing problems require analyses near the
resolution limit of the imagery, and windowing errors are intolerable.

A.S. Clustering

Cluster analysis is identical to classification except that the classes are not known a
prior. Various spectral or spatial descriptors of the pixels are analyzed for similari-
ties, and those pixels that are judged similar to each other or to some prototypical
seed pixels are assigned to the same class [Wacker69, Carlton77, Goldberg78, Yoo78,
Coleman79, Mitchell79, Schachter79]. Spatial analysis then completes the segmenta-
tion; this analysis may include probabilistic relaxation [Nagin79, Kohler~l] or other
methods of noise cleaning and boundary smcothing. Clustering can also be used to
merge regions found by thresholding or other methods [Haralick75a].

PHOENIX-style histogram segmentation is a type of cluster analysis. This is more evi-
dent when done in a multivariate space [Schachter75, SchachterT7, Hanson78, MU-
gram79, Schachter79, Milgram8O]. Multivariate histograms are typically quantized
very coarsely in each feature in order to reduce storage requirements and analysis
time. If finer quantization is required, either two passes should be made through the
data (planning), or an adaptive accumulator scheme should be used [Schachter75,
O'Roarke8l, Sloan8l]. Perhaps a better alternative is to use a parametric or adap-
tive (Perceptrm) cluster method not relying on histograms.

A.7. Region Growing

Region growing is based on the premise that it is easier to identify interior pixels
than border pixels. One starts with a set of region seeds, preferably one seed per
image region. Each region is then expanded like a wavefront, incorporating adjacent
unassigned pixels. Growth stops when all pixels have been absorbed or when unas-
signed pixels are too dissimilar to be merged with adjacent regions. An editing phase
may follow in which unassigned pixels are classified and neighboring regions are
tested to see if they can be merged.

One method is to start with completely homogeneous regions and then merge neigh-
bors that have statistically-similar pixel populations or classifications [Muerle68,
Gupta74]. Another is to merge neighbors that are divided by "weak" boundaries or
that together form a simple shape (the "phagocyte" heuristic) [Brice70]. Yet
another is to accept any unassigned pixel as a region seed and to grow the region
until its natural limits are found. The regions may be grown either sequentially
[Jarvis75] or in parallel during a single scan [Yakimovsky76]. Any of these methods
essentially combine connected-component extraction with region growing.

Region seeds are usually found by crude segmentation, retaining as seeds only those
ixel groups most certain to belong together. The seeds may be chosen interactively

Larvey76b] or automatically. Often the seeds are chosen by adaptive thresholding
or peak-finding algorithms applied to a gradient or edge transformation of the image.
The segmentation is then done on the original image data. (Region growing typically

63



uses only monochrome input, although see Kettig [Kettig76].)

Levine and Leemet [Levine76] have developed an interesting method of obtaining
region seeds from an edge map. The edges are thickened by pyramid reduction. As
the successive reductions occur, they Lsolate and eventually cover the pixels in the
more uniform region interiors. The last pixels to be enveloped are chosen as region
seeds. The growing process that follows is essentially the reverse of this region
shrinking.

The order in which pixels are considered tor merging is a major concern. Truly paral-
lel "best first" growth can be implemented on a sequential machine only by expen-
sive schemes to repeatedly examine eligible pixels. Single scan methods have been
proposed [Yakimovsky76, Somerville76], although a second scan is necessary to label
the region map.

Deciding whether to merge a pixel with an adjacent region is equivalent to a one-
sided hypothesis test. Some measure of membership must be computed and some
threshold must be used. Often the pixel is compared with the region mean, using the
region variance to set a threshold. Somerville and Mundy [Somerville76] use a planar
approximation to the region, thus allowing for slope in the luminance function. Other
researchers have compared the unassigned pixel only to the region pixels nearest it.
For a survey of techniques see Zucker [Zucker76a].

A major problem with region growing is leakage, similar to chaining in cluster
analysis. Two vary dissimilar regions may be joined by an area of intermediate
appearance: it is then possible for one region to grow across the neck and absorb pix-
els belonging to the other region. This can be remedied by recursive splitting or by a
split-and-merge editing phase, but greatly complicates the segmentation process.

A.8. Merging

Another approach is region merging, beginning with uniform or single pixel regions.
Those regions sharing a common border are eligible for merging. The border is elim-
inated if the combined region is sufficiently homogeneous. This differs from region
growing in that both regions to be merged may be larger than one pixel.

The decision of whether to merge two regions can be based on the strength of the
boundary between them. This ieads to trouble when two distinct regions share a
blurred or indistinct border. Merging can also be treated as a hypothesis test: the
two regions are combined only if this gives an acceptable planar fit to the data.

The results of region merging may depend strongly on the order in which region pairs
are tested for merging. Order independence may be achieved by considering all
merges in parallel and allowing only the best merge to occur at any or,c time. This
requires extra computation and "bookkeeping," leading many investigators to
develop approximations to best-first merging.

Merging algorithms avoid recomputation if the uniformity measure for a combined
region is a function of the statistics of its subregions. Maximum and minimum pixel
values, for instance, can be computed from the subregion extrema: only the initial N2

pixel examinations are needed. Unfortunately a large number of storage locations
(N2 per feature in theory, but less in practice) are required to hold the region statis-
tics. Elaborate data structures may also be required to keep track of the numerous
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irregularly-shaped regions.

Semantic merging integrates segmentation with interpretation. Yakimovsky and
Feldman [Yakimovsky73a, Yakimovsky73b, Feldman74] suggest using real-world pro-
babilities of region-type adjacencies. Such probabilities may be obtainable for lim-
ited domains such as X-ray analysis. A similar approach to region labeling has been
proposed by Tenenbaum and Barrow [Barrow76, Tenenbaum76a, Tenenbaum76b].

A.9. Split-Merge

Most researchers using splitting or merging techniques alone have acknowledged the
need for the complementary process as an editing step. At any stopping point in a
segmentation there are usually some regions that should be split further and some
that should be merged.

Merging techniques generally consider only two subregions at a time, and, the final
partitioning depends on the order of these comparisons. Splitting techniques are
similarly limited by the order in which histogram peaks are chosen. The best possi-
ble partioning, by any particular criterion, might -ot be reachable by either tech-
nique. Integrated (or iterated) splitting and merging may also fall short of this ideal,
but the combination is able to explore a larger space of possibilities.

Split-merge methods do not require accurate region seeds. Horowitz and Pavlidis
[Horowitz74] start with arbitrary square neighborhoods. (This is particularly useful
for computing Fourier texture measures over the seed regions [Pavlidis75].) Their
algorithm breaks the nonuniform squares into uniform seeds, then combines neigh-
boring fragments that are similar. The similarity measure may be based on intensity
or on texture properties [Chen79]. No connected-components analysis is necessary if
a segmentation tree is maintained.

Split-merge methods are able to use local information to determine each splitting,
but the region boundaries tend to "cling" to the major rectilinear divisions. The
splitting steps integrate well with quadtree representation of segmentation maps
[Horowitz74, Klinger76, Hunter79, Samet79], but a merging step tends to destroy the
quadtree structure. More elaborate linked tree structures have been developed
[Burt8Q, Pietikdinen82] to solve this problem.

Although these methods have become strongly linked to quadtree representations, it
is important to note that a split-merge approach is compatible with chain-code out-
lines, binary overlays, region maps, or other representations.

A.1O. Spanning-Tree Methods

Several researchers have proposed tree structures to model the hierarchical struc-
ture of a scene. (Often neighbor relationships are stored, making the structure a
graph rather than a tree.) The root node is the image itself; leaf nodes are the indivi-
dual pixels or homogerieous regions. The scene may be segmented at any resolution
by cutting branches of the tree [lQrsch7l, Freuder76, Horowitz76, Horowitz78].

Burr and Chien [Burr76] apply minimal spanning tree methods to find strongly linked
pixel groups separated from each other by weak links. The one-pass segmentation
method of Yakimovsky [Yakimovsky'76] builds a spatially constrained approximation
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to the minimal spanning tree; it could be called a minimal spanning maze. A very
similar segmentation system is developed in Narendra [NarencLra77, Narendra8O].

The spanning-tree methods all require that region interiors be smoother than border
neighborhoods. They are thus unsuitable for locating textured regions unless the
textures can be transformed to one or more feature planes with the property of
region homogeneity. Macrotextures must be analyzed by identifying the primitive
elements, then using structural methods to find texture regions.

A. 11. Segmentation Editing

The preceding methods provide the best segmentation possible using local statistical
analysis. The purpose of an editing phase is to improve the segmentation by using
more global or application-dependent knowledge.

It is much easier to merge regions than to split them, since splitting requires that
the best boundary be "entifled. Images are thus nearly always oversegmented to
simplify the editing or interpretation phases that follow.

Syntactic editing analyzes the properties of regions and their spatial relationships.
Pavlidis et al. [Tanimoto77, Horowitz78] use region adjacency graphs to identify
noise regions. These are deleted and the pixels are reassigned to neighboring
regions. Riseman and Arbib [Riseman77] use region adjacency graphs to identify
composite textures. The regions are considered texture elements, and it is desired
to find larger regions containing distinctive distributions of these primitives.

One of the main reasons for segmentation of textured images is to permit region-by-
region classification, which should be more accurate than pixel-by-pixel methods.
The classification can be done using multispectral discriminant analysis [Gupta74],
cluster analysis on within-region textures [Lumia8l], or model-based shape analysis
[Brenner77, Pavlidis78, Jain0, Rutkowski8l]. Primitive regions can then be merged
if their signatures are classified identically.

Semantic merging integrates region growing with interpretation [Yakimovsky73a,
Yakimovsky73b, Feldman74, Barrow76, Garvey76a, Garvey76b, Tenenbaum76a,
Tenenbaum76b, TenenbaumBO, Fischler82]. Probabilities of region-type adjacencies
may be even more applicable at the final editing and classification stage [Lumia~l].

Another form of editing uses initial region knowledge to guide a more sophisticated
segmenter. It may be possible, by examining the initial edge and interior points, to
infer a classifying rule or grammar [Keng77a, Keng77b]. This bootstrap information
can then be used to resegment the scene or to segment other similar scenes.
Bootstrapping is particularly effective if ground-truth segmentations are used to
infer the rules.

There is no reason why editing must be limited to a single pass. Iterative parallel
algorithms have been suggested (Rosenfeld76b, Riseman77] in which each pixel's
label or region membership is repeatedly updated as a function of its neighbors'
labels. These competitive-cooperative processes have also been used for edge thin-
ning and edge linking [Zucker76b, Zucker77]. The methods are very flexible and
powerful, but little is known about constructing the label assignment functions.

After a scene has been segmented into regions, it is still necessary to determine
which of these regions belong to composite objects. Even a simple object such as an
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untextured block may have several distinct regions because of lighting effects. On
the other hand, a single uniform region may be segmentable into a stack of blocks or
a clump of particles on the basis of its outline [Arcelli7l]. (The Price segmenter per-
forms some shape analysis and region editing during connected-component extrac-
tion. This is a rather expensive step, and PHOENIX has left it for an external editing
program.)

There have been many attempts to combine segmentation with semantic interpreta-
tion in natural scenes; see, for instance, [Preparata72, Tenenbaum73, Feldma74,
Barrow76, Garvey76a, Garvey76b, Price76b, Sakai76, Tenenbaum76a, Tenenbaum76b,
Levine77, Faugeras80, Tenenbaum80, Price8l, Fischler82]. Such recognition requires
domain-specific knowledge beyond the scope of this study.
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Appendix B

Connected Component Extraction

The following information on the connected component extraction algorithm was pro-
vided by Duane Williams of Carnegie-Mellon University as part of the PHOENIX code.
(For the algorithm used in the Ohlander/Price segmenter, see [OhlandEr78]. Another
algorithm is given in Kelly [Kelly70, pp. 54-55].)

This algorithm is the connected region extraction algorithm, reganal, developed for the
KIW segmentation program at Carnegie-Mellon University. It is based upon the method
of Agrawala and Kulkarni [Agrawala77]. This implementation (and that of KIWI) differs,
however, in several points from their algorithm.

This algorithm takes a binary image, and produces a list of descriptions of the com-
ponent regions (patches) and their pixels (strips). The patches are represented by
patch records, and include shape features and an indication of which patch contains
this one (i.e., surrounds it). The strips are described by strip records, which include a
row, the columns on which the strip begins and ends, and a link to the next strip. The
input image is actually a map of the interval numbers resulting from thresholding; this
procedure is executed once for each interval, and considers pixels in that interval
(given by the parameter vat) to be '1,' all others to be '0.' A border of O's is assumed
to surround the image.

The algorithm proceeds by forming, for each row, a description of the strips of that
row. This description includes, for each consecutive run of i's or O's, the column at
which the run starts. The run ends one column before the next run starts. The runs
for each row are compared with the runs of the previous row, by examining the loca-
tions of the endpoints, to determine how to propagate partial region Labels from the
previous row to the current row. The examination in performed by the assign pro-
cedure. This procedure can perform five actions: create a new region of l's (newbody),
create a new region of O's (newhole), propagate a label from an existing region
(extend), end a region of i's (endbody), end a region of O's (endhole).

The actions in assign take place within a big loop that scans one segment (run of V"s
followed by a run of O's) in the previous row, dealing with all segments in the current
row that are encountered. At their leftmost endpoint, the runs in. the current row are
labeled. This big loop may encounter eight situations; four while scanning the O's
before the ones, and four while scanning the l's before the next 0. Here, pictorially,
are the possible situations; the letters A, B, etc., mark the start of the next run; + indi-
cates a 1 and - indicates a 0:

Came I: ;"z..------------+.at-+ - --..
Des.rpton: a rax of l's extends from before A. lnto the

hole AD.
Actlons: extend (AD) to (V...)Reasons: the hale l... Touches the hole AB;

the rum ...1 h ka already been labeled.
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Case 11: rev. Row: ... ++- ----- ---- B+ 4..
his raw: ...+-4-++ 4-1-@ +4 -l- -kd- ..

Description: a run of l's extends from before A until
somewhere pest B.

Actions: audhole (AR)

reasons: the hole AB cannot continue below: the
run on this row had already bean labeled.

Case III:
?ev. Rew: ... +++A - - -- -3+-...
ts row ..

Desoriptlcn: a run of I's begins &xd ends within the
run AB.

ActIon: newbody (VW); extend (AB) to (v...)
Reasons: the body VI Is created: the hole ...

Touches the hole AB.

Case IT:
prew. Raw: ... +++A B------------8+44...
This row: ...--- V444-H-+4...
Deseription: a run of i's starts between A and B. and

continues past B
Aotions: extenA (B... 1 to (V...)
Reasons: the body V... Touches the body B...

The kale ... V has already been labeled.

Case v:

Nov. Raw: ...... B----B+4 4+44+4C --is row: --- --- .. .. ++....

Deocarlptien: a hale starts before B. ad ends before C.
Actions: outond (BC) to (T...)
Reacons: the body V... Touches the body BC; the hole

... V has already been labeled.

Case vI:
prey. Raw: ...--- B .. 4- +144-------
This row:
Desrlptlon: a hole starts before B and ends after C.
Actlons: endbody (BC)
reasons: the body BC does net continue below; the hole

ou this raw has already been labeled.

'ase vii:
prev. Row: ...---.4d&-4--i-4-C ----...-

his row: ..4-4U---V++...
Description: a hole starts and ende vitkin the run BC.
Actions: newhele (UT): extend (BC) to (V...
Reasozs. the,le UT is new; the body V.ouhes BC.

Cae villi:
prey. Row: ... ---B 4-44444+-*C -------
This row: .. . U -------------
Description: a heln stirta between B aid C. and ends

after C.
AclIono: extend (C...) to (U...)

aseo .U has already been labeled; theReasons: te boy hole U... Touches the hole C...

Therc are two cases not covered here. the case in which a hole starts before A and ends
after B, and the case in which a run of i's starts before B and ends after C. These cases
need not be examined, since they involve no new bodies or holes, no ending bodies or
holes, and no propagation of labels.

There are also two cases not completely examined, cases ii and vi, in which a body or
hole ends. In case ii. we must note the fact that body B... is touching the run on the
current row, which is touching body two possibilties. If ...A and B... are the same par-
tial region then the hole A3 is completely contained witbin that partial region, if ..A
and B... are different, they are to be merged together. Both cases are discussed below
in more detail. Similarly, in case vi, holes ...B and C... touch each other. In the pro-
gram, these cases are handled by the endbody and endhowe procedures.
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It must also be kept in mind that a single partial region may, by cases iii and vii, be
split up into any number of runs on a single row; some of these may be ended, some
merged, and some extended on any given row of the image. So, we must keep track of
exactly what has happened to a partial region throughout the scan of the entire row;
then, we can do drastic things (like declaring a partial region to be really at its end) at
the end of the row.

There is always an issue, in connectivity algorithms, of the exact definition of connec-
tivity. Two definitions are the most common: 4-connectivity and 8-connectivity.

The definitions are these:
4-connected 8-connected

X XXX
X+x X+X
X XXX

(the pixel + is connected to all pixels x)

For reasons pointed out by Rosenfeld [Rosenfeld76a], it is frequently desirable to have
objects (i.e., l's) be 4-connected and holes (i.e., 0's) 8-connected, or vice versa. In
fact, this algorithm depends on this distinction. For the segmentation program, it is
necessary to have objects be 4-connected in order to avoid some inflnite-loop situa-
tions, for example, if the input is alternating 1 and 0 pixels, like a checkerboard. So,
holes are 8-connected and objects are 4-connected. This may be reversed (objects 8-
connected and holes 4-connected) by converting all the "< signs in assign (where
column numbers are being compared) to <=,' and all the '<=' signs (again. only for
comparisons of column numbers) to <'.

A single row is represented by the line data structure. This contains the number of
segments, Lsegs; the segments Lseg themselves; and two counters: Luurseg and Lcol.
These counters are used in assign for indicating the current segment (Lcurseg) and
the column on which the next segment begins (Lcol). Each segment record indicates
the column of the first 1, the column of the first 0; and the partial-region labels
assigned to tlfe I's and the O's.

There is assumed to be a region of O's surrounding the image; this is called outside,
and is represented by partial region preg.outside. This is accomplished by the follow-
ing steps:

* The firstrow procedure pretends there is a row of O's from before the first
column until past the last one.

* The runcode procedure pretends there are O's from the last 1 until past the
end of the image.

* The extend procedure pretends there is another segment to the left of the
first segment of the row, which has already been labeled as outside.

* The merging procedure (etc.) always merges other partial regions into out-
side; never outside into another partial region.

* The region description for the outside region is not meaningful, and may con-
tain garbage.

" The lastrow procedure pretends there is a r Ys from before the first
column until past the last one.
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Peculiarities of PR_&sc:

The fields of the region description of a partial region (PR..desc) are used in a special
way: J.rstart is indeed the first row of the partial region. R.zows, however, is the last
row number rather than the number of rows. Similarly, Rcstart is the starting
column, but cols is the ending column- R-area, Rholes, and Rhare- are normal. The
centroid, however, is accumulated in R.rcent and R..cent as the sum of the row (and
column) number for each pixel of the partial region. Then, when the patch record is
written, Racent is divided by R.zre (also, R.ccent is divided by R-_rea) to compute
the actual coordinates of the centroid.

The most important piece of information in the patch record is the link to the contain-
ing patch, P-outer. However, as stated in the paragraph above, the patch record is
created when its partial region(s) comes to an end; this is before the patch record for
the containing patch has been created! So, it is necessary to remember, when a patch
is creatcd, which partial region contains it. Then, when a patch is made from this par-
tial region, the link in the contained patch can be updated. This remembering is
accomplished via the PR-inner and Prz~et links: each partial region points (via
Pinner) to a patch it contains, which points (via P.next) to the next one, and so on.
When the partial region is converted to a patch, this list is scanned, and the new patch
number is placed into the Pouterfield.

There is one problem with the above structure: when partial region A is merged into
partial region B, both A and B have these lists of contained patches. The lists could be
combined by traversing one list and updating the link of the last patch, etc. However,
the lists may become quite long, and it is not attractive to have to scan through them
(potentially many times, as partial regions are merged). So, instead, each partial
region has a list of other partial regions that have been merged into it (PR.piece), with
the last partial region on the list containing PREGNIL as its PR.piece field. When a
partial region is converted to a patch, this list is traversed and all the patches cou-
tained by all these partial regions are updated. The partial regions may then be freed
so they may be used again.

There is, however, a further problem. Since all these merged partial regions are kept
around, there may be references to them (i.e., segments that are labeled with these
merged partial regions, other partial regions indicating that these partial regions sur-
round them, etc.). So, whenever such a reference is made, it is necessary to find which
partial region is really indicated (thus, if A is merged into B and we refer to A, we really
want to talk about B). The PR..ihwle field is a link to the partial region used after
merging, and the root function traces down these links to find the intended partial
region. Note that PR.piece is not the exact inverse of preg-2dhle. The PR..adle fields
form a list from the active partial region through all those partial regions merged with
it. If, however, A is merged with B and B is merged with C, then the PR...hole field of A
points to B and PR...whe of B points to C. If, then, D is merged into C, PR..whole of D
also points to C. In this example, the PR.piece fields form a real linked list:

C -> D -> B -> A

while the PR.wIwle fields form a tree:
AI
B D
I/
C

(with links pointing down, in this picture).

The run codes normaly indicate a row, the columns at which the run starts and ends,
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and a link to the next run for the same region. When partial regions are merged, they
each indicate a linked list of runs; somehow, these must be merged as well. This is
accomplished by a special run whose row number is the special value SMERGE. This
run has two fields: pointers to the two linked lists to be merged. During the actual
traversal of the runs, both lists must be examined when a merge run is encountered.

The column numbers used in this procedure are sometimes tricky. Normally, for each
run of l's and O's (i.e., in the segment record), the column of the start of each run is
stored. This means that the last column of a run of l's is actually the start of the next
run of O's, minus one. In the partial region records, cols is this value; actually, one plus
the rightmost column of the partial region. When patch records are created, the
proper conversion is performed. Also, when run records are stored, the column of the
end of the run is really the last column of the run; i.e., 1 has already been subtracted.
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